File size: 5,587 Bytes
83d8d3c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
import argparse
import os

import cv2
import kornia
import numpy as np
import torch
from loguru import logger

from benchmark.face_pipeline import alignFace
from benchmark.face_pipeline import FaceDetector
from benchmark.face_pipeline import inverse_transform_batch
from benchmark.face_pipeline import SoftErosion
from configs.train_config import TrainConfig
from models.model import HifiFace


class ImageSwap:
    def __init__(self, cfg):
        self.source_face = cfg.source_face
        self.target_face = cfg.target_face
        self.device = cfg.device
        self.facedetector = FaceDetector(cfg.face_detector_weights, device=self.device)
        self.alignface = alignFace()
        self.work_dir = cfg.work_dir
        opt = TrainConfig()
        opt.use_ddp = False
        checkpoint = (cfg.model_path, cfg.model_idx)
        self.model = HifiFace(
            opt.identity_extractor_config, is_training=False, device=self.device, load_checkpoint=checkpoint
        )
        self.model.eval()
        os.makedirs(self.work_dir, exist_ok=True)

        # model-idx_swapped_src-image-name_target-face-name.jpg
        swapped_image_name = (
            str(cfg.model_idx)
            + "_"
            + "swapped"
            + "_"
            + os.path.basename(self.source_face).split(".")[0]
            + "_"
            + os.path.basename(self.target_face).split(".")[0]
            + ".jpg"
        )
        self.swapped_image = os.path.join(self.work_dir, swapped_image_name)
        self.smooth_mask = SoftErosion(kernel_size=7, threshold=0.9, iterations=7).to(self.device)

    def _geometry_transfrom_warp_affine(self, swapped_image, inv_att_transforms, frame_size, square_mask):
        swapped_image = kornia.geometry.transform.warp_affine(
            swapped_image,
            inv_att_transforms,
            frame_size,
            mode="bilinear",
            padding_mode="border",
            align_corners=True,
            fill_value=torch.zeros(3),
        )

        square_mask = kornia.geometry.transform.warp_affine(
            square_mask,
            inv_att_transforms,
            frame_size,
            mode="bilinear",
            padding_mode="zeros",
            align_corners=True,
            fill_value=torch.zeros(3),
        )
        return swapped_image, square_mask

    def detect_and_align(self, image):
        detection = self.facedetector(image)
        if detection.score is None:
            self.kps_window = []
            return None, None
        max_score_ind = np.argmax(detection.score, axis=0)
        kps = detection.key_points[max_score_ind]
        align_img, warp_mat = self.alignface.align_face(image, kps, 256)
        align_img = cv2.resize(align_img, (256, 256))
        align_img = align_img.transpose(2, 0, 1)
        align_img = torch.from_numpy(align_img).unsqueeze(0).to(self.device).float()
        align_img = align_img / 255.0
        return align_img, warp_mat

    def inference(self):
        src = cv2.cvtColor(cv2.imread(self.source_face), cv2.COLOR_BGR2RGB)
        src, _ = self.detect_and_align(src)
        if src is None:
            print("no face in src_img")
            return
        target = cv2.cvtColor(cv2.imread(self.target_face), cv2.COLOR_BGR2RGB)
        align_target, warp_mat = self.detect_and_align(target)
        if align_target is None:
            print("no face in target_img")
            return
        logger.info("start swapping")
        frame_size = (target.shape[0], target.shape[1])
        with torch.no_grad():
            swapped_face, m_r = self.model.forward(src, align_target)
            swapped_face = torch.clamp(swapped_face, 0, 1)
            smooth_face_mask, _ = self.smooth_mask(m_r)
        warp_mat = torch.from_numpy(warp_mat).float().unsqueeze(0)
        inverse_warp_mat = inverse_transform_batch(warp_mat, device=self.device)
        swapped_face, smooth_face_mask = self._geometry_transfrom_warp_affine(
            swapped_face, inverse_warp_mat, frame_size, smooth_face_mask
        )
        target = torch.from_numpy(target.transpose(2, 0, 1)).unsqueeze(0).to(self.device).float() / 255.0
        result_face = (1 - smooth_face_mask) * target + smooth_face_mask * swapped_face
        result_face = torch.clamp(result_face * 255.0, 0.0, 255.0, out=None).type(dtype=torch.uint8)
        result_face = result_face.detach().cpu().numpy()
        img = result_face.transpose(0, 2, 3, 1)[0]
        img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
        cv2.imwrite(self.swapped_image, img)


class ConfigPath:
    source_face = ""
    target_face = ""
    work_dir = ""
    face_detector_weights = "/mnt/c/yangguo/useful_ckpt/face_detector/face_detector_scrfd_10g_bnkps.onnx"
    model_path = ""
    model_idx = 80000
    device = "cuda"


def main():
    cfg = ConfigPath()
    parser = argparse.ArgumentParser(
        prog="benchmark", description="What the program does", epilog="Text at the bottom of help"
    )
    parser.add_argument("-m", "--model_path")
    parser.add_argument("-i", "--model_idx")
    parser.add_argument("-s", "--source_face")
    parser.add_argument("-t", "--target_face")
    parser.add_argument("-w", "--work_dir")
    parser.add_argument("-d", "--device", default="cuda")

    args = parser.parse_args()
    cfg.source_face = args.source_face
    cfg.target_face = args.target_face
    cfg.model_path = args.model_path
    cfg.model_idx = int(args.model_idx)
    cfg.work_dir = args.work_dir
    cfg.device = args.device
    infer = ImageSwap(cfg)
    infer.inference()


if __name__ == "__main__":
    main()