File size: 2,248 Bytes
83d8d3c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
import numpy as np
import onnx
import torch


def convert_onnx(net, path_module, output, opset=11, simplify=False):
    assert isinstance(net, torch.nn.Module)
    img = np.random.randint(0, 255, size=(112, 112, 3), dtype=np.int32)
    img = img.astype(np.float)
    img = (img / 255.0 - 0.5) / 0.5  # torch style norm
    img = img.transpose((2, 0, 1))
    img = torch.from_numpy(img).unsqueeze(0).float()

    weight = torch.load(path_module)
    net.load_state_dict(weight, strict=True)
    net.eval()
    torch.onnx.export(
        net, img, output, input_names=["data"], keep_initializers_as_inputs=False, verbose=False, opset_version=opset
    )
    model = onnx.load(output)
    graph = model.graph
    graph.input[0].type.tensor_type.shape.dim[0].dim_param = "None"
    if simplify:
        from onnxsim import simplify

        model, check = simplify(model)
        assert check, "Simplified ONNX model could not be validated"
    onnx.save(model, output)


if __name__ == "__main__":
    import os
    import argparse
    from backbones import get_model

    parser = argparse.ArgumentParser(description="ArcFace PyTorch to onnx")
    parser.add_argument("input", type=str, help="input backbone.pth file or path")
    parser.add_argument("--output", type=str, default=None, help="output onnx path")
    parser.add_argument("--network", type=str, default=None, help="backbone network")
    parser.add_argument("--simplify", type=bool, default=False, help="onnx simplify")
    args = parser.parse_args()
    input_file = args.input
    if os.path.isdir(input_file):
        input_file = os.path.join(input_file, "model.pt")
    assert os.path.exists(input_file)
    # model_name = os.path.basename(os.path.dirname(input_file)).lower()
    # params = model_name.split("_")
    # if len(params) >= 3 and params[1] in ('arcface', 'cosface'):
    #     if args.network is None:
    #         args.network = params[2]
    assert args.network is not None
    print(args)
    backbone_onnx = get_model(args.network, dropout=0.0, fp16=False, num_features=512)
    if args.output is None:
        args.output = os.path.join(os.path.dirname(args.input), "model.onnx")
    convert_onnx(backbone_onnx, input_file, args.output, simplify=args.simplify)