Spaces:
Runtime error
Runtime error
File size: 19,096 Bytes
83d8d3c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 |
import collections
from typing import Callable
import torch
from torch import distributed
from torch.nn.functional import linear
from torch.nn.functional import normalize
class PartialFC(torch.nn.Module):
"""
https://arxiv.org/abs/2203.15565
A distributed sparsely updating variant of the FC layer, named Partial FC (PFC).
When sample rate less than 1, in each iteration, positive class centers and a random subset of
negative class centers are selected to compute the margin-based softmax loss, all class
centers are still maintained throughout the whole training process, but only a subset is
selected and updated in each iteration.
.. note::
When sample rate equal to 1, Partial FC is equal to model parallelism(default sample rate is 1).
Example:
--------
>>> module_pfc = PartialFC(embedding_size=512, num_classes=8000000, sample_rate=0.2)
>>> for img, labels in data_loader:
>>> embeddings = net(img)
>>> loss = module_pfc(embeddings, labels, optimizer)
>>> loss.backward()
>>> optimizer.step()
"""
_version = 1
def __init__(
self,
margin_loss: Callable,
embedding_size: int,
num_classes: int,
sample_rate: float = 1.0,
fp16: bool = False,
):
"""
Paramenters:
-----------
embedding_size: int
The dimension of embedding, required
num_classes: int
Total number of classes, required
sample_rate: float
The rate of negative centers participating in the calculation, default is 1.0.
"""
super(PartialFC, self).__init__()
assert distributed.is_initialized(), "must initialize distributed before create this"
self.rank = distributed.get_rank()
self.world_size = distributed.get_world_size()
self.dist_cross_entropy = DistCrossEntropy()
self.embedding_size = embedding_size
self.sample_rate: float = sample_rate
self.fp16 = fp16
self.num_local: int = num_classes // self.world_size + int(self.rank < num_classes % self.world_size)
self.class_start: int = num_classes // self.world_size * self.rank + min(
self.rank, num_classes % self.world_size
)
self.num_sample: int = int(self.sample_rate * self.num_local)
self.last_batch_size: int = 0
self.weight: torch.Tensor
self.weight_mom: torch.Tensor
self.weight_activated: torch.nn.Parameter
self.weight_activated_mom: torch.Tensor
self.is_updated: bool = True
self.init_weight_update: bool = True
if self.sample_rate < 1:
self.register_buffer("weight", tensor=torch.normal(0, 0.01, (self.num_local, embedding_size)))
self.register_buffer("weight_mom", tensor=torch.zeros_like(self.weight))
self.register_parameter("weight_activated", param=torch.nn.Parameter(torch.empty(0, 0)))
self.register_buffer("weight_activated_mom", tensor=torch.empty(0, 0))
self.register_buffer("weight_index", tensor=torch.empty(0, 0))
else:
self.weight_activated = torch.nn.Parameter(torch.normal(0, 0.01, (self.num_local, embedding_size)))
# margin_loss
if isinstance(margin_loss, Callable):
self.margin_softmax = margin_loss
else:
raise
@torch.no_grad()
def sample(self, labels: torch.Tensor, index_positive: torch.Tensor, optimizer: torch.optim.Optimizer):
"""
This functions will change the value of labels
Parameters:
-----------
labels: torch.Tensor
pass
index_positive: torch.Tensor
pass
optimizer: torch.optim.Optimizer
pass
"""
positive = torch.unique(labels[index_positive], sorted=True).cuda()
if self.num_sample - positive.size(0) >= 0:
perm = torch.rand(size=[self.num_local]).cuda()
perm[positive] = 2.0
index = torch.topk(perm, k=self.num_sample)[1].cuda()
index = index.sort()[0].cuda()
else:
index = positive
self.weight_index = index
labels[index_positive] = torch.searchsorted(index, labels[index_positive])
self.weight_activated = torch.nn.Parameter(self.weight[self.weight_index])
self.weight_activated_mom = self.weight_mom[self.weight_index]
if isinstance(optimizer, torch.optim.SGD):
# TODO the params of partial fc must be last in the params list
optimizer.state.pop(optimizer.param_groups[-1]["params"][0], None)
optimizer.param_groups[-1]["params"][0] = self.weight_activated
optimizer.state[self.weight_activated]["momentum_buffer"] = self.weight_activated_mom
else:
raise
@torch.no_grad()
def update(self):
"""partial weight to global"""
if self.init_weight_update:
self.init_weight_update = False
return
if self.sample_rate < 1:
self.weight[self.weight_index] = self.weight_activated
self.weight_mom[self.weight_index] = self.weight_activated_mom
def forward(
self,
local_embeddings: torch.Tensor,
local_labels: torch.Tensor,
optimizer: torch.optim.Optimizer,
):
"""
Parameters:
----------
local_embeddings: torch.Tensor
feature embeddings on each GPU(Rank).
local_labels: torch.Tensor
labels on each GPU(Rank).
Returns:
-------
loss: torch.Tensor
pass
"""
local_labels.squeeze_()
local_labels = local_labels.long()
self.update()
batch_size = local_embeddings.size(0)
if self.last_batch_size == 0:
self.last_batch_size = batch_size
assert self.last_batch_size == batch_size, "last batch size do not equal current batch size: {} vs {}".format(
self.last_batch_size, batch_size
)
_gather_embeddings = [torch.zeros((batch_size, self.embedding_size)).cuda() for _ in range(self.world_size)]
_gather_labels = [torch.zeros(batch_size).long().cuda() for _ in range(self.world_size)]
_list_embeddings = AllGather(local_embeddings, *_gather_embeddings)
distributed.all_gather(_gather_labels, local_labels)
embeddings = torch.cat(_list_embeddings)
labels = torch.cat(_gather_labels)
labels = labels.view(-1, 1)
index_positive = (self.class_start <= labels) & (labels < self.class_start + self.num_local)
labels[~index_positive] = -1
labels[index_positive] -= self.class_start
if self.sample_rate < 1:
self.sample(labels, index_positive, optimizer)
with torch.cuda.amp.autocast(self.fp16):
norm_embeddings = normalize(embeddings)
norm_weight_activated = normalize(self.weight_activated)
logits = linear(norm_embeddings, norm_weight_activated)
if self.fp16:
logits = logits.float()
logits = logits.clamp(-1, 1)
logits = self.margin_softmax(logits, labels)
loss = self.dist_cross_entropy(logits, labels)
return loss
def state_dict(self, destination=None, prefix="", keep_vars=False):
if destination is None:
destination = collections.OrderedDict()
destination._metadata = collections.OrderedDict()
for name, module in self._modules.items():
if module is not None:
module.state_dict(destination, prefix + name + ".", keep_vars=keep_vars)
if self.sample_rate < 1:
destination["weight"] = self.weight.detach()
else:
destination["weight"] = self.weight_activated.data.detach()
return destination
def load_state_dict(self, state_dict, strict: bool = True):
if self.sample_rate < 1:
self.weight = state_dict["weight"].to(self.weight.device)
self.weight_mom.zero_()
self.weight_activated.data.zero_()
self.weight_activated_mom.zero_()
self.weight_index.zero_()
else:
self.weight_activated.data = state_dict["weight"].to(self.weight_activated.data.device)
class PartialFCAdamW(torch.nn.Module):
def __init__(
self,
margin_loss: Callable,
embedding_size: int,
num_classes: int,
sample_rate: float = 1.0,
fp16: bool = False,
):
"""
Paramenters:
-----------
embedding_size: int
The dimension of embedding, required
num_classes: int
Total number of classes, required
sample_rate: float
The rate of negative centers participating in the calculation, default is 1.0.
"""
super(PartialFCAdamW, self).__init__()
assert distributed.is_initialized(), "must initialize distributed before create this"
self.rank = distributed.get_rank()
self.world_size = distributed.get_world_size()
self.dist_cross_entropy = DistCrossEntropy()
self.embedding_size = embedding_size
self.sample_rate: float = sample_rate
self.fp16 = fp16
self.num_local: int = num_classes // self.world_size + int(self.rank < num_classes % self.world_size)
self.class_start: int = num_classes // self.world_size * self.rank + min(
self.rank, num_classes % self.world_size
)
self.num_sample: int = int(self.sample_rate * self.num_local)
self.last_batch_size: int = 0
self.weight: torch.Tensor
self.weight_exp_avg: torch.Tensor
self.weight_exp_avg_sq: torch.Tensor
self.weight_activated: torch.nn.Parameter
self.weight_activated_exp_avg: torch.Tensor
self.weight_activated_exp_avg_sq: torch.Tensor
self.is_updated: bool = True
self.init_weight_update: bool = True
if self.sample_rate < 1:
self.register_buffer("weight", tensor=torch.normal(0, 0.01, (self.num_local, embedding_size)))
self.register_buffer("weight_exp_avg", tensor=torch.zeros_like(self.weight))
self.register_buffer("weight_exp_avg_sq", tensor=torch.zeros_like(self.weight))
self.register_parameter("weight_activated", param=torch.nn.Parameter(torch.empty(0, 0)))
self.register_buffer("weight_activated_exp_avg", tensor=torch.empty(0, 0))
self.register_buffer("weight_activated_exp_avg_sq", tensor=torch.empty(0, 0))
else:
self.weight_activated = torch.nn.Parameter(torch.normal(0, 0.01, (self.num_local, embedding_size)))
self.step = 0
if isinstance(margin_loss, Callable):
self.margin_softmax = margin_loss
else:
raise
@torch.no_grad()
def sample(self, labels, index_positive, optimizer):
self.step += 1
positive = torch.unique(labels[index_positive], sorted=True).cuda()
if self.num_sample - positive.size(0) >= 0:
perm = torch.rand(size=[self.num_local]).cuda()
perm[positive] = 2.0
index = torch.topk(perm, k=self.num_sample)[1].cuda()
index = index.sort()[0].cuda()
else:
index = positive
self.weight_index = index
labels[index_positive] = torch.searchsorted(index, labels[index_positive])
self.weight_activated = torch.nn.Parameter(self.weight[self.weight_index])
self.weight_activated_exp_avg = self.weight_exp_avg[self.weight_index]
self.weight_activated_exp_avg_sq = self.weight_exp_avg_sq[self.weight_index]
if isinstance(optimizer, (torch.optim.Adam, torch.optim.AdamW)):
# TODO the params of partial fc must be last in the params list
optimizer.state.pop(optimizer.param_groups[-1]["params"][0], None)
optimizer.param_groups[-1]["params"][0] = self.weight_activated
optimizer.state[self.weight_activated]["exp_avg"] = self.weight_activated_exp_avg
optimizer.state[self.weight_activated]["exp_avg_sq"] = self.weight_activated_exp_avg_sq
optimizer.state[self.weight_activated]["step"] = self.step
else:
raise
@torch.no_grad()
def update(self):
"""partial weight to global"""
if self.init_weight_update:
self.init_weight_update = False
return
if self.sample_rate < 1:
self.weight[self.weight_index] = self.weight_activated
self.weight_exp_avg[self.weight_index] = self.weight_activated_exp_avg
self.weight_exp_avg_sq[self.weight_index] = self.weight_activated_exp_avg_sq
def forward(
self,
local_embeddings: torch.Tensor,
local_labels: torch.Tensor,
optimizer: torch.optim.Optimizer,
):
"""
Parameters:
----------
local_embeddings: torch.Tensor
feature embeddings on each GPU(Rank).
local_labels: torch.Tensor
labels on each GPU(Rank).
Returns:
-------
loss: torch.Tensor
pass
"""
local_labels.squeeze_()
local_labels = local_labels.long()
self.update()
batch_size = local_embeddings.size(0)
if self.last_batch_size == 0:
self.last_batch_size = batch_size
assert self.last_batch_size == batch_size, "last batch size do not equal current batch size: {} vs {}".format(
self.last_batch_size, batch_size
)
_gather_embeddings = [torch.zeros((batch_size, self.embedding_size)).cuda() for _ in range(self.world_size)]
_gather_labels = [torch.zeros(batch_size).long().cuda() for _ in range(self.world_size)]
_list_embeddings = AllGather(local_embeddings, *_gather_embeddings)
distributed.all_gather(_gather_labels, local_labels)
embeddings = torch.cat(_list_embeddings)
labels = torch.cat(_gather_labels)
labels = labels.view(-1, 1)
index_positive = (self.class_start <= labels) & (labels < self.class_start + self.num_local)
labels[~index_positive] = -1
labels[index_positive] -= self.class_start
if self.sample_rate < 1:
self.sample(labels, index_positive, optimizer)
with torch.cuda.amp.autocast(self.fp16):
norm_embeddings = normalize(embeddings)
norm_weight_activated = normalize(self.weight_activated)
logits = linear(norm_embeddings, norm_weight_activated)
if self.fp16:
logits = logits.float()
logits = logits.clamp(-1, 1)
logits = self.margin_softmax(logits, labels)
loss = self.dist_cross_entropy(logits, labels)
return loss
def state_dict(self, destination=None, prefix="", keep_vars=False):
if destination is None:
destination = collections.OrderedDict()
destination._metadata = collections.OrderedDict()
for name, module in self._modules.items():
if module is not None:
module.state_dict(destination, prefix + name + ".", keep_vars=keep_vars)
if self.sample_rate < 1:
destination["weight"] = self.weight.detach()
else:
destination["weight"] = self.weight_activated.data.detach()
return destination
def load_state_dict(self, state_dict, strict: bool = True):
if self.sample_rate < 1:
self.weight = state_dict["weight"].to(self.weight.device)
self.weight_exp_avg.zero_()
self.weight_exp_avg_sq.zero_()
self.weight_activated.data.zero_()
self.weight_activated_exp_avg.zero_()
self.weight_activated_exp_avg_sq.zero_()
else:
self.weight_activated.data = state_dict["weight"].to(self.weight_activated.data.device)
class DistCrossEntropyFunc(torch.autograd.Function):
"""
CrossEntropy loss is calculated in parallel, allreduce denominator into single gpu and calculate softmax.
Implemented of ArcFace (https://arxiv.org/pdf/1801.07698v1.pdf):
"""
@staticmethod
def forward(ctx, logits: torch.Tensor, label: torch.Tensor):
""" """
batch_size = logits.size(0)
# for numerical stability
max_logits, _ = torch.max(logits, dim=1, keepdim=True)
# local to global
distributed.all_reduce(max_logits, distributed.ReduceOp.MAX)
logits.sub_(max_logits)
logits.exp_()
sum_logits_exp = torch.sum(logits, dim=1, keepdim=True)
# local to global
distributed.all_reduce(sum_logits_exp, distributed.ReduceOp.SUM)
logits.div_(sum_logits_exp)
index = torch.where(label != -1)[0]
# loss
loss = torch.zeros(batch_size, 1, device=logits.device)
loss[index] = logits[index].gather(1, label[index])
distributed.all_reduce(loss, distributed.ReduceOp.SUM)
ctx.save_for_backward(index, logits, label)
return loss.clamp_min_(1e-30).log_().mean() * (-1)
@staticmethod
def backward(ctx, loss_gradient):
"""
Args:
loss_grad (torch.Tensor): gradient backward by last layer
Returns:
gradients for each input in forward function
`None` gradients for one-hot label
"""
(
index,
logits,
label,
) = ctx.saved_tensors
batch_size = logits.size(0)
one_hot = torch.zeros(size=[index.size(0), logits.size(1)], device=logits.device)
one_hot.scatter_(1, label[index], 1)
logits[index] -= one_hot
logits.div_(batch_size)
return logits * loss_gradient.item(), None
class DistCrossEntropy(torch.nn.Module):
def __init__(self):
super(DistCrossEntropy, self).__init__()
def forward(self, logit_part, label_part):
return DistCrossEntropyFunc.apply(logit_part, label_part)
class AllGatherFunc(torch.autograd.Function):
"""AllGather op with gradient backward"""
@staticmethod
def forward(ctx, tensor, *gather_list):
gather_list = list(gather_list)
distributed.all_gather(gather_list, tensor)
return tuple(gather_list)
@staticmethod
def backward(ctx, *grads):
grad_list = list(grads)
rank = distributed.get_rank()
grad_out = grad_list[rank]
dist_ops = [
distributed.reduce(grad_out, rank, distributed.ReduceOp.SUM, async_op=True)
if i == rank
else distributed.reduce(grad_list[i], i, distributed.ReduceOp.SUM, async_op=True)
for i in range(distributed.get_world_size())
]
for _op in dist_ops:
_op.wait()
grad_out *= len(grad_list) # cooperate with distributed loss function
return (grad_out, *[None for _ in range(len(grad_list))])
AllGather = AllGatherFunc.apply
|