Spaces:
Running
Running
Update
Browse files- .pre-commit-config.yaml +59 -34
- .style.yapf +0 -5
- .vscode/settings.json +30 -0
- README.md +1 -1
- app.py +47 -43
- requirements.txt +2 -2
- style.css +8 -0
.pre-commit-config.yaml
CHANGED
@@ -1,35 +1,60 @@
|
|
1 |
repos:
|
2 |
-
- repo: https://github.com/pre-commit/pre-commit-hooks
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
- repo: https://github.com/pre-commit/mirrors-mypy
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
repos:
|
2 |
+
- repo: https://github.com/pre-commit/pre-commit-hooks
|
3 |
+
rev: v4.5.0
|
4 |
+
hooks:
|
5 |
+
- id: check-executables-have-shebangs
|
6 |
+
- id: check-json
|
7 |
+
- id: check-merge-conflict
|
8 |
+
- id: check-shebang-scripts-are-executable
|
9 |
+
- id: check-toml
|
10 |
+
- id: check-yaml
|
11 |
+
- id: end-of-file-fixer
|
12 |
+
- id: mixed-line-ending
|
13 |
+
args: ["--fix=lf"]
|
14 |
+
- id: requirements-txt-fixer
|
15 |
+
- id: trailing-whitespace
|
16 |
+
- repo: https://github.com/myint/docformatter
|
17 |
+
rev: v1.7.5
|
18 |
+
hooks:
|
19 |
+
- id: docformatter
|
20 |
+
args: ["--in-place"]
|
21 |
+
- repo: https://github.com/pycqa/isort
|
22 |
+
rev: 5.13.2
|
23 |
+
hooks:
|
24 |
+
- id: isort
|
25 |
+
args: ["--profile", "black"]
|
26 |
+
- repo: https://github.com/pre-commit/mirrors-mypy
|
27 |
+
rev: v1.8.0
|
28 |
+
hooks:
|
29 |
+
- id: mypy
|
30 |
+
args: ["--ignore-missing-imports"]
|
31 |
+
additional_dependencies:
|
32 |
+
[
|
33 |
+
"types-python-slugify",
|
34 |
+
"types-requests",
|
35 |
+
"types-PyYAML",
|
36 |
+
"types-pytz",
|
37 |
+
]
|
38 |
+
- repo: https://github.com/psf/black
|
39 |
+
rev: 24.2.0
|
40 |
+
hooks:
|
41 |
+
- id: black
|
42 |
+
language_version: python3.10
|
43 |
+
args: ["--line-length", "119"]
|
44 |
+
- repo: https://github.com/kynan/nbstripout
|
45 |
+
rev: 0.7.1
|
46 |
+
hooks:
|
47 |
+
- id: nbstripout
|
48 |
+
args:
|
49 |
+
[
|
50 |
+
"--extra-keys",
|
51 |
+
"metadata.interpreter metadata.kernelspec cell.metadata.pycharm",
|
52 |
+
]
|
53 |
+
- repo: https://github.com/nbQA-dev/nbQA
|
54 |
+
rev: 1.7.1
|
55 |
+
hooks:
|
56 |
+
- id: nbqa-black
|
57 |
+
- id: nbqa-pyupgrade
|
58 |
+
args: ["--py37-plus"]
|
59 |
+
- id: nbqa-isort
|
60 |
+
args: ["--float-to-top"]
|
.style.yapf
DELETED
@@ -1,5 +0,0 @@
|
|
1 |
-
[style]
|
2 |
-
based_on_style = pep8
|
3 |
-
blank_line_before_nested_class_or_def = false
|
4 |
-
spaces_before_comment = 2
|
5 |
-
split_before_logical_operator = true
|
|
|
|
|
|
|
|
|
|
|
|
.vscode/settings.json
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"editor.formatOnSave": true,
|
3 |
+
"files.insertFinalNewline": false,
|
4 |
+
"[python]": {
|
5 |
+
"editor.defaultFormatter": "ms-python.black-formatter",
|
6 |
+
"editor.formatOnType": true,
|
7 |
+
"editor.codeActionsOnSave": {
|
8 |
+
"source.organizeImports": "explicit"
|
9 |
+
}
|
10 |
+
},
|
11 |
+
"[jupyter]": {
|
12 |
+
"files.insertFinalNewline": false
|
13 |
+
},
|
14 |
+
"black-formatter.args": [
|
15 |
+
"--line-length=119"
|
16 |
+
],
|
17 |
+
"isort.args": ["--profile", "black"],
|
18 |
+
"flake8.args": [
|
19 |
+
"--max-line-length=119"
|
20 |
+
],
|
21 |
+
"ruff.lint.args": [
|
22 |
+
"--line-length=119"
|
23 |
+
],
|
24 |
+
"notebook.output.scrolling": true,
|
25 |
+
"notebook.formatOnCellExecution": true,
|
26 |
+
"notebook.formatOnSave.enabled": true,
|
27 |
+
"notebook.codeActionsOnSave": {
|
28 |
+
"source.organizeImports": "explicit"
|
29 |
+
}
|
30 |
+
}
|
README.md
CHANGED
@@ -4,7 +4,7 @@ emoji: 🐠
|
|
4 |
colorFrom: green
|
5 |
colorTo: blue
|
6 |
sdk: gradio
|
7 |
-
sdk_version:
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
---
|
|
|
4 |
colorFrom: green
|
5 |
colorTo: blue
|
6 |
sdk: gradio
|
7 |
+
sdk_version: 4.19.2
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
---
|
app.py
CHANGED
@@ -15,29 +15,25 @@ import PIL.Image
|
|
15 |
import torch
|
16 |
import torchvision.transforms as T
|
17 |
|
18 |
-
DESCRIPTION =
|
19 |
|
20 |
-
MODEL_REPO =
|
21 |
|
22 |
|
23 |
def load_sample_image_paths() -> list[pathlib.Path]:
|
24 |
-
image_dir = pathlib.Path(
|
25 |
if not image_dir.exists():
|
26 |
-
dataset_repo =
|
27 |
-
path = huggingface_hub.hf_hub_download(dataset_repo,
|
28 |
-
'images.tar.gz',
|
29 |
-
repo_type='dataset')
|
30 |
with tarfile.open(path) as f:
|
31 |
f.extractall()
|
32 |
-
return sorted(image_dir.glob(
|
33 |
|
34 |
|
35 |
def load_model(device: torch.device) -> torch.nn.Module:
|
36 |
-
path = huggingface_hub.hf_hub_download(MODEL_REPO,
|
37 |
state_dict = torch.load(path)
|
38 |
-
model = torch.hub.load(
|
39 |
-
'resnet50',
|
40 |
-
pretrained=False)
|
41 |
model.load_state_dict(state_dict)
|
42 |
model.to(device)
|
43 |
model.eval()
|
@@ -45,16 +41,21 @@ def load_model(device: torch.device) -> torch.nn.Module:
|
|
45 |
|
46 |
|
47 |
def load_labels() -> list[str]:
|
48 |
-
path = huggingface_hub.hf_hub_download(MODEL_REPO,
|
49 |
with open(path) as f:
|
50 |
labels = json.load(f)
|
51 |
return labels
|
52 |
|
53 |
|
54 |
@torch.inference_mode()
|
55 |
-
def predict(
|
56 |
-
|
57 |
-
|
|
|
|
|
|
|
|
|
|
|
58 |
data = transform(image)
|
59 |
data = data.to(device).unsqueeze(0)
|
60 |
preds = model(data)[0]
|
@@ -72,41 +73,44 @@ def predict(image: PIL.Image.Image, score_threshold: float,
|
|
72 |
image_paths = load_sample_image_paths()
|
73 |
examples = [[path.as_posix(), 0.4] for path in image_paths]
|
74 |
|
75 |
-
device = torch.device(
|
76 |
model = load_model(device)
|
77 |
labels = load_labels()
|
78 |
|
79 |
-
transform = T.Compose(
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
])
|
|
|
|
|
84 |
|
85 |
-
fn = functools.partial(predict,
|
86 |
-
transform=transform,
|
87 |
-
device=device,
|
88 |
-
model=model,
|
89 |
-
labels=labels)
|
90 |
|
91 |
-
with gr.Blocks(css=
|
92 |
gr.Markdown(DESCRIPTION)
|
93 |
with gr.Row():
|
94 |
with gr.Column():
|
95 |
-
image = gr.Image(label=
|
96 |
-
threshold = gr.Slider(label=
|
97 |
-
|
98 |
-
maximum=1,
|
99 |
-
step=0.05,
|
100 |
-
value=0.4)
|
101 |
-
run_button = gr.Button('Run')
|
102 |
with gr.Column():
|
103 |
-
result = gr.Label(label=
|
104 |
|
105 |
inputs = [image, threshold]
|
106 |
-
gr.Examples(
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
import torch
|
16 |
import torchvision.transforms as T
|
17 |
|
18 |
+
DESCRIPTION = "# [RF5/danbooru-pretrained](https://github.com/RF5/danbooru-pretrained)"
|
19 |
|
20 |
+
MODEL_REPO = "public-data/danbooru-pretrained"
|
21 |
|
22 |
|
23 |
def load_sample_image_paths() -> list[pathlib.Path]:
|
24 |
+
image_dir = pathlib.Path("images")
|
25 |
if not image_dir.exists():
|
26 |
+
dataset_repo = "hysts/sample-images-TADNE"
|
27 |
+
path = huggingface_hub.hf_hub_download(dataset_repo, "images.tar.gz", repo_type="dataset")
|
|
|
|
|
28 |
with tarfile.open(path) as f:
|
29 |
f.extractall()
|
30 |
+
return sorted(image_dir.glob("*"))
|
31 |
|
32 |
|
33 |
def load_model(device: torch.device) -> torch.nn.Module:
|
34 |
+
path = huggingface_hub.hf_hub_download(MODEL_REPO, "resnet50-13306192.pth")
|
35 |
state_dict = torch.load(path)
|
36 |
+
model = torch.hub.load("RF5/danbooru-pretrained", "resnet50", pretrained=False)
|
|
|
|
|
37 |
model.load_state_dict(state_dict)
|
38 |
model.to(device)
|
39 |
model.eval()
|
|
|
41 |
|
42 |
|
43 |
def load_labels() -> list[str]:
|
44 |
+
path = huggingface_hub.hf_hub_download(MODEL_REPO, "class_names_6000.json")
|
45 |
with open(path) as f:
|
46 |
labels = json.load(f)
|
47 |
return labels
|
48 |
|
49 |
|
50 |
@torch.inference_mode()
|
51 |
+
def predict(
|
52 |
+
image: PIL.Image.Image,
|
53 |
+
score_threshold: float,
|
54 |
+
transform: Callable,
|
55 |
+
device: torch.device,
|
56 |
+
model: torch.nn.Module,
|
57 |
+
labels: list[str],
|
58 |
+
) -> dict[str, float]:
|
59 |
data = transform(image)
|
60 |
data = data.to(device).unsqueeze(0)
|
61 |
preds = model(data)[0]
|
|
|
73 |
image_paths = load_sample_image_paths()
|
74 |
examples = [[path.as_posix(), 0.4] for path in image_paths]
|
75 |
|
76 |
+
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
77 |
model = load_model(device)
|
78 |
labels = load_labels()
|
79 |
|
80 |
+
transform = T.Compose(
|
81 |
+
[
|
82 |
+
T.Resize(360),
|
83 |
+
T.ToTensor(),
|
84 |
+
T.Normalize(mean=[0.7137, 0.6628, 0.6519], std=[0.2970, 0.3017, 0.2979]),
|
85 |
+
]
|
86 |
+
)
|
87 |
|
88 |
+
fn = functools.partial(predict, transform=transform, device=device, model=model, labels=labels)
|
|
|
|
|
|
|
|
|
89 |
|
90 |
+
with gr.Blocks(css="style.css") as demo:
|
91 |
gr.Markdown(DESCRIPTION)
|
92 |
with gr.Row():
|
93 |
with gr.Column():
|
94 |
+
image = gr.Image(label="Input", type="pil")
|
95 |
+
threshold = gr.Slider(label="Score Threshold", minimum=0, maximum=1, step=0.05, value=0.4)
|
96 |
+
run_button = gr.Button()
|
|
|
|
|
|
|
|
|
97 |
with gr.Column():
|
98 |
+
result = gr.Label(label="Output")
|
99 |
|
100 |
inputs = [image, threshold]
|
101 |
+
gr.Examples(
|
102 |
+
examples=examples,
|
103 |
+
inputs=inputs,
|
104 |
+
outputs=result,
|
105 |
+
fn=fn,
|
106 |
+
cache_examples=os.getenv("CACHE_EXAMPLES") == "1",
|
107 |
+
)
|
108 |
+
run_button.click(
|
109 |
+
fn=fn,
|
110 |
+
inputs=inputs,
|
111 |
+
outputs=result,
|
112 |
+
api_name="predict",
|
113 |
+
)
|
114 |
+
|
115 |
+
if __name__ == "__main__":
|
116 |
+
demo.queue(max_size=15).launch()
|
requirements.txt
CHANGED
@@ -1,2 +1,2 @@
|
|
1 |
-
torch==
|
2 |
-
torchvision==0.
|
|
|
1 |
+
torch==2.0.1
|
2 |
+
torchvision==0.15.2
|
style.css
CHANGED
@@ -1,3 +1,11 @@
|
|
1 |
h1 {
|
2 |
text-align: center;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
}
|
|
|
1 |
h1 {
|
2 |
text-align: center;
|
3 |
+
display: block;
|
4 |
+
}
|
5 |
+
|
6 |
+
#duplicate-button {
|
7 |
+
margin: auto;
|
8 |
+
color: #fff;
|
9 |
+
background: #1565c0;
|
10 |
+
border-radius: 100vh;
|
11 |
}
|