import os import cv2 import numpy as np import onnxruntime from utils import Preprocess class Photo2Cartoon: def __init__(self): self.pre = Preprocess() curPath = os.path.abspath(os.path.dirname(__file__)) print(os.path.join(curPath, 'models/photo2cartoon_weights.onnx')) # assert os.path.exists('./models/photo2cartoon_weights.onnx'), "[Step1: load weights] Can not find 'photo2cartoon_weights.onnx' in folder 'models!!!'" self.session = onnxruntime.InferenceSession(os.path.join(curPath, 'models/photo2cartoon_weights.onnx')) print('[Step1: load weights] success!') def inference(self, in_path): img = cv2.cvtColor(cv2.imread(in_path), cv2.COLOR_BGR2RGB) # face alignment and segmentation face_rgba = self.pre.process(img) if face_rgba is None: print('[Step2: face detect] can not detect face!!!') return None print('[Step2: face detect] success!') face_rgba = cv2.resize(face_rgba, (256, 256), interpolation=cv2.INTER_AREA) face = face_rgba[:, :, :3].copy() mask = face_rgba[:, :, 3][:, :, np.newaxis].copy() / 255. face = (face * mask + (1 - mask) * 255) / 127.5 - 1 face = np.transpose(face[np.newaxis, :, :, :], (0, 3, 1, 2)).astype(np.float32) # inference cartoon = self.session.run(['output'], input_feed={'input': face}) # post-process cartoon = np.transpose(cartoon[0][0], (1, 2, 0)) cartoon = (cartoon + 1) * 127.5 cartoon = (cartoon * mask + 255 * (1 - mask)).astype(np.uint8) #cartoon = cv2.cvtColor(cartoon, cv2.COLOR_RGB2BGR) print('[Step3: photo to cartoon] success!') return cartoon if __name__ == '__main__': c2p = Photo2Cartoon() cartoon = c2p.inference('') if cartoon is not None: print('Cartoon portrait has been saved successfully!')