import cog import cv2 import tempfile import torch import numpy as np import os from pathlib import Path from utils import Preprocess from models import ResnetGenerator class Predictor(cog.Predictor): def setup(self): pass @cog.input("photo", type=Path, help="portrait photo (size < 1M)") def predict(self, photo): img = cv2.cvtColor(cv2.imread(str(photo)), cv2.COLOR_BGR2RGB) out_path = gen_cartoon(img) return out_path def gen_cartoon(img): pre = Preprocess() device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") net = ResnetGenerator(ngf=32, img_size=256, light=True).to(device) assert os.path.exists( './models/photo2cartoon_weights.pt'), "[Step1: load weights] Can not find 'photo2cartoon_weights.pt' in folder 'models!!!'" params = torch.load('./models/photo2cartoon_weights.pt', map_location=device) net.load_state_dict(params['genA2B']) # face alignment and segmentation face_rgba = pre.process(img) if face_rgba is None: return None face_rgba = cv2.resize(face_rgba, (256, 256), interpolation=cv2.INTER_AREA) face = face_rgba[:, :, :3].copy() mask = face_rgba[:, :, 3][:, :, np.newaxis].copy() / 255. face = (face * mask + (1 - mask) * 255) / 127.5 - 1 face = np.transpose(face[np.newaxis, :, :, :], (0, 3, 1, 2)).astype(np.float32) face = torch.from_numpy(face).to(device) # inference with torch.no_grad(): cartoon = net(face)[0][0] # post-process cartoon = np.transpose(cartoon.cpu().numpy(), (1, 2, 0)) cartoon = (cartoon + 1) * 127.5 cartoon = (cartoon * mask + 255 * (1 - mask)).astype(np.uint8) cartoon = cv2.cvtColor(cartoon, cv2.COLOR_RGB2BGR) out_path = Path(tempfile.mkdtemp()) / "out.png" cv2.imwrite(str(out_path), cartoon) return out_path