|
from fastai.vision import * |
|
|
|
|
|
class FeatureLoss(nn.Module): |
|
def __init__(self, m_feat, layer_ids, layer_wgts): |
|
super().__init__() |
|
self.m_feat = m_feat |
|
self.loss_features = [self.m_feat[i] for i in layer_ids] |
|
self.hooks = hook_outputs(self.loss_features, detach=False) |
|
self.wgts = layer_wgts |
|
self.metric_names = ['pixel', ] + [f'feat_{i}' for i in range(len(layer_ids)) |
|
] + [f'gram_{i}' for i in range(len(layer_ids))] |
|
|
|
def make_features(self, x, clone=False): |
|
self.m_feat(x) |
|
return [(o.clone() if clone else o) for o in self.hooks.stored] |
|
|
|
def forward(self, input, target): |
|
out_feat = self.make_features(target, clone=True) |
|
in_feat = self.make_features(input) |
|
self.feat_losses = [base_loss(input, target)] |
|
self.feat_losses += [base_loss(f_in, f_out) * w |
|
for f_in, f_out, w in zip(in_feat, out_feat, self.wgts)] |
|
self.feat_losses += [base_loss(gram_matrix(f_in), gram_matrix(f_out)) * w ** 2 * 5e3 |
|
for f_in, f_out, w in zip(in_feat, out_feat, self.wgts)] |
|
self.metrics = dict(zip(self.metric_names, self.feat_losses)) |
|
return sum(self.feat_losses) |
|
|
|
def __del__(self): self.hooks.remove() |
|
|
|
|