import argparse from tools.utils import * import os from tqdm import tqdm from glob import glob import time import numpy as np from net import generator os.environ["CUDA_VISIBLE_DEVICES"] = "-1" class ImportGraph: def __init__(self, checkpoint_dir): self.graph = tf.Graph() self.sess = tf.Session(graph=self.graph, config=tf.ConfigProto(allow_soft_placement=True, gpu_options=tf.GPUOptions(allow_growth=True))) with self.graph.as_default(): test_real = tf.placeholder(tf.float32, [1, None, None, 3], name='test') with tf.variable_scope("generator", reuse=True): self.test_generated = generator.G_net(test_real).fake saver = tf.train.Saver() ckpt = tf.train.get_checkpoint_state(checkpoint_dir) # checkpoint file information if ckpt and ckpt.model_checkpoint_path: ckpt_name = os.path.basename(ckpt.model_checkpoint_path) # first line saver.restore(self.sess, os.path.join(checkpoint_dir, ckpt_name)) print(" [*] Success to read {}".format(os.path.join(checkpoint_dir, ckpt_name))) else: print(" [*] Failed to find a checkpoint") def test(self, style_name, sample_file, if_adjust_brightness, img_size=[256,256]): result_dir = 'results/' + style_name check_folder(result_dir) sample_image = np.asarray(load_test_data(sample_file, img_size)) image_path = os.path.join(result_dir, '{0}'.format(os.path.basename(sample_file))) fake_img = self.sess.run(self.test_generated, feed_dict={test_real: sample_image}) if if_adjust_brightness: save_images(fake_img, image_path, sample_file) else: save_images(fake_img, image_path, None) return image_path def stats_graph(graph): flops = tf.profiler.profile(graph, options=tf.profiler.ProfileOptionBuilder.float_operation()) # params = tf.profiler.profile(graph, options=tf.profiler.ProfileOptionBuilder.trainable_variables_parameter()) print('FLOPs: {}'.format(flops.total_float_ops)) def test(checkpoint_dir, style_name, test_dir, if_adjust_brightness, img_size=[256,256]): # tf.reset_default_graph() result_dir = 'results/'+style_name check_folder(result_dir) test_files = [test_dir] test_real = tf.placeholder(tf.float32, [1, None, None, 3], name='test') with tf.variable_scope("generator", reuse=False): test_generated = generator.G_net(test_real).fake saver = tf.train.Saver() out_paths = [] gpu_options = tf.GPUOptions(allow_growth=True) with tf.Session(config=tf.ConfigProto(allow_soft_placement=True, gpu_options=gpu_options)) as sess: # tf.global_variables_initializer().run() # load model ckpt = tf.train.get_checkpoint_state(checkpoint_dir) # checkpoint file information if ckpt and ckpt.model_checkpoint_path: ckpt_name = os.path.basename(ckpt.model_checkpoint_path) # first line saver.restore(sess, os.path.join(checkpoint_dir, ckpt_name)) print(" [*] Success to read {}".format(os.path.join(checkpoint_dir, ckpt_name))) else: print(" [*] Failed to find a checkpoint") return # stats_graph(tf.get_default_graph()) begin = time.time() for sample_file in tqdm(test_files) : # print('Processing image: ' + sample_file) sample_image = np.asarray(load_test_data(sample_file, img_size)) image_path = os.path.join(result_dir,'{0}'.format(os.path.basename(sample_file))) fake_img = sess.run(test_generated, feed_dict = {test_real : sample_image}) if if_adjust_brightness: save_images(fake_img, image_path, sample_file) else: save_images(fake_img, image_path, None) out_paths.append(image_path) end = time.time() print(f'test-time: {end-begin} s') return out_paths if __name__ == '__main__': arg = parse_args() print(arg.checkpoint_dir) test(arg.checkpoint_dir, arg.save_dir, arg.test_dir, arg.if_adjust_brightness)