Spaces:
Runtime error
Runtime error
init
Browse files
test.py
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
from tools.utils import *
|
3 |
+
import os
|
4 |
+
from tqdm import tqdm
|
5 |
+
from glob import glob
|
6 |
+
import time
|
7 |
+
import numpy as np
|
8 |
+
from net import generator
|
9 |
+
os.environ["CUDA_VISIBLE_DEVICES"] = "-1"
|
10 |
+
|
11 |
+
def parse_args():
|
12 |
+
desc = "AnimeGANv2"
|
13 |
+
parser = argparse.ArgumentParser(description=desc)
|
14 |
+
|
15 |
+
parser.add_argument('--checkpoint_dir', type=str, default='checkpoint/'+'generator_Shinkai_weight',
|
16 |
+
help='Directory name to save the checkpoints')
|
17 |
+
parser.add_argument('--test_dir', type=str, default='dataset/test/t',
|
18 |
+
help='Directory name of test photos')
|
19 |
+
parser.add_argument('--save_dir', type=str, default='Shinkai/t',
|
20 |
+
help='what style you want to get')
|
21 |
+
parser.add_argument('--if_adjust_brightness', type=bool, default=True,
|
22 |
+
help='adjust brightness by the real photo')
|
23 |
+
|
24 |
+
"""checking arguments"""
|
25 |
+
|
26 |
+
return parser.parse_args()
|
27 |
+
|
28 |
+
def stats_graph(graph):
|
29 |
+
flops = tf.profiler.profile(graph, options=tf.profiler.ProfileOptionBuilder.float_operation())
|
30 |
+
# params = tf.profiler.profile(graph, options=tf.profiler.ProfileOptionBuilder.trainable_variables_parameter())
|
31 |
+
print('FLOPs: {}'.format(flops.total_float_ops))
|
32 |
+
|
33 |
+
def test(checkpoint_dir, style_name, test_dir, if_adjust_brightness, img_size=[256,256]):
|
34 |
+
# tf.reset_default_graph()
|
35 |
+
result_dir = 'results/'+style_name
|
36 |
+
check_folder(result_dir)
|
37 |
+
test_files = [test_dir]
|
38 |
+
|
39 |
+
test_real = tf.placeholder(tf.float32, [1, None, None, 3], name='test')
|
40 |
+
|
41 |
+
with tf.variable_scope("generator", reuse=False):
|
42 |
+
test_generated = generator.G_net(test_real).fake
|
43 |
+
saver = tf.train.Saver()
|
44 |
+
|
45 |
+
out_paths = []
|
46 |
+
|
47 |
+
gpu_options = tf.GPUOptions(allow_growth=True)
|
48 |
+
with tf.Session(config=tf.ConfigProto(allow_soft_placement=True, gpu_options=gpu_options)) as sess:
|
49 |
+
# tf.global_variables_initializer().run()
|
50 |
+
# load model
|
51 |
+
ckpt = tf.train.get_checkpoint_state(checkpoint_dir) # checkpoint file information
|
52 |
+
if ckpt and ckpt.model_checkpoint_path:
|
53 |
+
ckpt_name = os.path.basename(ckpt.model_checkpoint_path) # first line
|
54 |
+
saver.restore(sess, os.path.join(checkpoint_dir, ckpt_name))
|
55 |
+
print(" [*] Success to read {}".format(os.path.join(checkpoint_dir, ckpt_name)))
|
56 |
+
else:
|
57 |
+
print(" [*] Failed to find a checkpoint")
|
58 |
+
return
|
59 |
+
# stats_graph(tf.get_default_graph())
|
60 |
+
|
61 |
+
begin = time.time()
|
62 |
+
for sample_file in tqdm(test_files) :
|
63 |
+
# print('Processing image: ' + sample_file)
|
64 |
+
sample_image = np.asarray(load_test_data(sample_file, img_size))
|
65 |
+
image_path = os.path.join(result_dir,'{0}'.format(os.path.basename(sample_file)))
|
66 |
+
fake_img = sess.run(test_generated, feed_dict = {test_real : sample_image})
|
67 |
+
if if_adjust_brightness:
|
68 |
+
save_images(fake_img, image_path, sample_file)
|
69 |
+
else:
|
70 |
+
save_images(fake_img, image_path, None)
|
71 |
+
|
72 |
+
out_paths.push(image_path)
|
73 |
+
end = time.time()
|
74 |
+
print(f'test-time: {end-begin} s')
|
75 |
+
|
76 |
+
return out_paths
|
77 |
+
|
78 |
+
if __name__ == '__main__':
|
79 |
+
arg = parse_args()
|
80 |
+
print(arg.checkpoint_dir)
|
81 |
+
test(arg.checkpoint_dir, arg.save_dir, arg.test_dir, arg.if_adjust_brightness)
|