AnimeGANv2 / test1.py
wahaha's picture
init
14baf72
raw
history blame
4.21 kB
import argparse
from tools.utils import *
import os
from tqdm import tqdm
from glob import glob
import time
import numpy as np
from net import generator
os.environ["CUDA_VISIBLE_DEVICES"] = "-1"
class ImportGraph:
def __init__(self, checkpoint_dir):
self.graph = tf.Graph()
self.sess = tf.Session(graph=self.graph, config=tf.ConfigProto(allow_soft_placement=True, gpu_options=tf.GPUOptions(allow_growth=True)))
with self.graph.as_default():
test_real = tf.placeholder(tf.float32, [1, None, None, 3], name='test')
with tf.variable_scope("generator", reuse=False):
self.test_generated = generator.G_net(test_real).fake
self.saver = tf.train.Saver()
ckpt = tf.train.get_checkpoint_state(checkpoint_dir) # checkpoint file information
if ckpt and ckpt.model_checkpoint_path:
ckpt_name = os.path.basename(ckpt.model_checkpoint_path) # first line
self.saver.restore(self.sess, os.path.join(checkpoint_dir, ckpt_name))
print(" [*] Success to read {}".format(os.path.join(checkpoint_dir, ckpt_name)))
else:
print(" [*] Failed to find a checkpoint")
def test(self, style_name, sample_file, if_adjust_brightness, img_size=[256,256]):
result_dir = 'results/' + style_name
check_folder(result_dir)
sample_image = np.asarray(load_test_data(sample_file, img_size))
image_path = os.path.join(result_dir, '{0}'.format(os.path.basename(sample_file)))
fake_img = self.sess.run(self.test_generated, feed_dict={test_real: sample_image})
if if_adjust_brightness:
save_images(fake_img, image_path, sample_file)
else:
save_images(fake_img, image_path, None)
return image_path
def stats_graph(graph):
flops = tf.profiler.profile(graph, options=tf.profiler.ProfileOptionBuilder.float_operation())
# params = tf.profiler.profile(graph, options=tf.profiler.ProfileOptionBuilder.trainable_variables_parameter())
print('FLOPs: {}'.format(flops.total_float_ops))
def test(checkpoint_dir, style_name, test_dir, if_adjust_brightness, img_size=[256,256]):
# tf.reset_default_graph()
result_dir = 'results/'+style_name
check_folder(result_dir)
test_files = [test_dir]
test_real = tf.placeholder(tf.float32, [1, None, None, 3], name='test')
with tf.variable_scope("generator", reuse=False):
test_generated = generator.G_net(test_real).fake
saver = tf.train.Saver()
out_paths = []
gpu_options = tf.GPUOptions(allow_growth=True)
with tf.Session(config=tf.ConfigProto(allow_soft_placement=True, gpu_options=gpu_options)) as sess:
# tf.global_variables_initializer().run()
# load model
ckpt = tf.train.get_checkpoint_state(checkpoint_dir) # checkpoint file information
if ckpt and ckpt.model_checkpoint_path:
ckpt_name = os.path.basename(ckpt.model_checkpoint_path) # first line
saver.restore(sess, os.path.join(checkpoint_dir, ckpt_name))
print(" [*] Success to read {}".format(os.path.join(checkpoint_dir, ckpt_name)))
else:
print(" [*] Failed to find a checkpoint")
return
# stats_graph(tf.get_default_graph())
begin = time.time()
for sample_file in tqdm(test_files) :
# print('Processing image: ' + sample_file)
sample_image = np.asarray(load_test_data(sample_file, img_size))
image_path = os.path.join(result_dir,'{0}'.format(os.path.basename(sample_file)))
fake_img = sess.run(test_generated, feed_dict = {test_real : sample_image})
if if_adjust_brightness:
save_images(fake_img, image_path, sample_file)
else:
save_images(fake_img, image_path, None)
out_paths.append(image_path)
end = time.time()
print(f'test-time: {end-begin} s')
return out_paths
if __name__ == '__main__':
arg = parse_args()
print(arg.checkpoint_dir)
test(arg.checkpoint_dir, arg.save_dir, arg.test_dir, arg.if_adjust_brightness)