use gr.Dataframe
Browse files
app.py
CHANGED
@@ -12,7 +12,7 @@ data = {"Dataset": datasets}
|
|
12 |
def mean(data, framework):
|
13 |
try:
|
14 |
return f"{round(mase.loc[data, framework].metric_error.mean(),3)} +/- {round(mase.loc[data, framework].metric_error.std(),3)}"
|
15 |
-
except KeyError
|
16 |
return "n/a"
|
17 |
|
18 |
|
@@ -20,22 +20,20 @@ for framework in frameworks:
|
|
20 |
data.update({framework: [mean(dataset, framework) for dataset in datasets]})
|
21 |
|
22 |
df = pd.DataFrame(data=data)
|
23 |
-
table = df.to_markdown(index=False)
|
24 |
-
|
25 |
|
26 |
with gr.Blocks() as demo:
|
27 |
gr.Markdown(
|
28 |
-
|
29 |
# Time Series Forecasting Leaderboard
|
30 |
|
31 |
-
This is a leaderboard of the MASE metric for time series forecasting problem on the different open datasets and models.
|
32 |
|
33 |
The table is generated from the paper [AutoGluon–TimeSeries: AutoML for Probabilistic Time Series Forecasting](https://github.com/autogluon/autogluon) by Oleksandr Shchur, Caner Turkmen, Nick Erickson, Huibin Shen, Alexander Shirkov, Tony Hu, and Bernie Wang.
|
34 |
|
35 |
## MASE Metric
|
36 |
"""
|
37 |
)
|
38 |
-
gr.
|
39 |
|
40 |
if __name__ == "__main__":
|
41 |
demo.launch()
|
|
|
12 |
def mean(data, framework):
|
13 |
try:
|
14 |
return f"{round(mase.loc[data, framework].metric_error.mean(),3)} +/- {round(mase.loc[data, framework].metric_error.std(),3)}"
|
15 |
+
except KeyError:
|
16 |
return "n/a"
|
17 |
|
18 |
|
|
|
20 |
data.update({framework: [mean(dataset, framework) for dataset in datasets]})
|
21 |
|
22 |
df = pd.DataFrame(data=data)
|
|
|
|
|
23 |
|
24 |
with gr.Blocks() as demo:
|
25 |
gr.Markdown(
|
26 |
+
"""
|
27 |
# Time Series Forecasting Leaderboard
|
28 |
|
29 |
+
This is a leaderboard of the [MASE](https://huggingface.co/spaces/evaluate-metric/mase) metric for time series forecasting problem on the different open datasets and models.
|
30 |
|
31 |
The table is generated from the paper [AutoGluon–TimeSeries: AutoML for Probabilistic Time Series Forecasting](https://github.com/autogluon/autogluon) by Oleksandr Shchur, Caner Turkmen, Nick Erickson, Huibin Shen, Alexander Shirkov, Tony Hu, and Bernie Wang.
|
32 |
|
33 |
## MASE Metric
|
34 |
"""
|
35 |
)
|
36 |
+
gr.Dataframe(df)
|
37 |
|
38 |
if __name__ == "__main__":
|
39 |
demo.launch()
|