File size: 3,469 Bytes
97ab62b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ccf318d
 
97ab62b
 
ccf318d
 
 
 
 
 
97ab62b
 
ccf318d
 
97ab62b
 
ccf318d
 
 
 
 
 
97ab62b
 
 
ccf318d
 
 
 
 
 
97ab62b
 
 
ccf318d
97ab62b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ccf318d
 
97ab62b
 
ccf318d
 
 
 
 
97ab62b
 
 
 
84a0e08
97ab62b
ccf318d
 
97ab62b
 
ccf318d
97ab62b
ccf318d
97ab62b
ccf318d
 
 
 
97ab62b
 
ccf318d
 
97ab62b
 
ccf318d
 
 
188d8b2
 
ccf318d
 
97ab62b
 
 
ccf318d
 
 
188d8b2
ccf318d
 
97ab62b
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
from typing import List

import numpy as np
import pandas as pd
import plotly.graph_objects as go


def plot_train_test(df1: pd.DataFrame, df2: pd.DataFrame) -> go.Figure:
    """
    Plot the training and test datasets using Plotly.

    Args:
        df1 (pd.DataFrame): Train dataset
        df2 (pd.DataFrame): Test dataset

    Returns:
        None
    """

    # Create a Plotly figure
    fig = go.Figure()

    # Add the first scatter plot with steelblue color
    fig.add_trace(
        go.Scatter(
            x=df1.index,
            y=df1.iloc[:, 0],
            mode="lines",
            name="Training Data",
            line=dict(color="steelblue"),
            marker=dict(color="steelblue"),
        )
    )

    # Add the second scatter plot with yellow color
    fig.add_trace(
        go.Scatter(
            x=df2.index,
            y=df2.iloc[:, 0],
            mode="lines",
            name="Test Data",
            line=dict(color="gold"),
            marker=dict(color="gold"),
        )
    )

    # Customize the layout
    fig.update_layout(
        title="Univariate Time Series",
        xaxis=dict(title="Date"),
        yaxis=dict(title="Value"),
        showlegend=True,
        template="plotly_white",
    )
    return fig


def plot_forecast(df: pd.DataFrame, forecasts: List[pd.DataFrame]):
    """
    Plot the true values and forecasts using Plotly.

    Args:
        df (pd.DataFrame): DataFrame with the true values. Assumed to have an index and columns.
        forecasts (List[pd.DataFrame]): List of DataFrames containing the forecasts.

    Returns:
        go.Figure: Plotly figure object.
    """

    # Create a Plotly figure
    fig = go.Figure()

    # Add the true values trace
    fig.add_trace(
        go.Scatter(
            x=pd.to_datetime(df.index),
            y=df.iloc[:, 0],
            mode="lines",
            name="True values",
            line=dict(color="black"),
        )
    )

    # Add the forecast traces
    colors = ["green", "blue", "purple"]
    for i, forecast in enumerate(forecasts):
        color = colors[i % len(colors)]
        for sample in forecast.samples:
            fig.add_trace(
                go.Scatter(
                    x=forecast.index.to_timestamp(),
                    y=sample,
                    mode="lines",
                    opacity=0.15,  # Adjust opacity to control visibility of individual samples
                    name=f"Forecast {i + 1}",
                    showlegend=False,  # Hide the individual forecast series from the legend
                    hoverinfo="none",  # Disable hover information for the forecast series
                    line=dict(color=color),
                )
            )
        # Add the average
        mean_forecast = np.mean(forecast.samples, axis=0)
        fig.add_trace(
            go.Scatter(
                x=forecast.index.to_timestamp(),
                y=mean_forecast,
                mode="lines",
                name="Mean Forecast",
                line=dict(color="red", dash="dash"),
                legendgroup="mean forecast",
                showlegend=i == 0,
            )
        )

    # Customize the layout
    fig.update_layout(
        title=f"{df.columns[0]} Forecast",
        yaxis=dict(title=df.columns[0]),
        showlegend=True,
        legend=dict(x=0, y=1),
        hovermode="x",  # Enable x-axis hover for better interactivity
    )

    # Return the figure
    return fig