Spaces:
Runtime error
Runtime error
Karthikeyan
commited on
Commit
•
836a196
1
Parent(s):
2b9fffc
Update app.py
Browse files
app.py
CHANGED
@@ -85,7 +85,7 @@ history_state = gr.State()
|
|
85 |
summarizer = Summarizer()
|
86 |
sentiment = SentimentAnalyzer()
|
87 |
|
88 |
-
class
|
89 |
|
90 |
def __init__(self):
|
91 |
pass
|
@@ -121,7 +121,7 @@ class Chat_Bot:
|
|
121 |
scores = sentiment_scores.values()
|
122 |
fig = px.bar(x=scores, y=labels, orientation='h', color=labels, color_discrete_map={"Negative": "red", "Positive": "green", "Neutral": "gray"})
|
123 |
fig.update_traces(texttemplate='%{x:.2f}%', textposition='outside')
|
124 |
-
fig.update_layout(height=
|
125 |
return fig
|
126 |
|
127 |
def _history_of_chat(self):
|
@@ -145,10 +145,10 @@ class Chat_Bot:
|
|
145 |
start_sequence = "\nCustomer:"
|
146 |
restart_sequence = "\nVodafone Customer Relationship Manager:"
|
147 |
prompt = 'your task is make a conversation between a customer and vodafone telecom customer relationship manager.'
|
148 |
-
file_path = "vodafone_customer_details.json"
|
149 |
with open(file_path) as file:
|
150 |
customer_details = json.load(file)
|
151 |
-
prompt
|
152 |
response = openai.Completion.create(
|
153 |
model="text-davinci-003",
|
154 |
prompt=prompt,
|
@@ -185,20 +185,20 @@ class Chat_Bot:
|
|
185 |
scores=self._text_box(customer_emotion,agent_emotion,agent_sentiment_score,customer_sentiment_score)
|
186 |
|
187 |
customer_fig=self._display_graph(customer_sentiment_score)
|
188 |
-
customer_fig.update_layout(title="Sentiment Analysis",width=
|
189 |
|
190 |
agent_fig=self._display_graph(agent_sentiment_score)
|
191 |
-
agent_fig.update_layout(title="Sentiment Analysis",width=
|
192 |
|
193 |
agent_emotion_score = sentiment.emotion_analysis_for_graph(agent_emotion)
|
194 |
|
195 |
agent_emotion_fig=self._display_graph(agent_emotion_score)
|
196 |
-
agent_emotion_fig.update_layout(title="Emotion Analysis",width=
|
197 |
|
198 |
customer_emotion_score = sentiment.emotion_analysis_for_graph(customer_emotion)
|
199 |
|
200 |
customer_emotion_fig=self._display_graph(customer_emotion_score)
|
201 |
-
customer_emotion_fig.update_layout(title="Emotion Analysis",width=
|
202 |
|
203 |
return scores,customer_fig,agent_fig,customer_emotion_fig,agent_emotion_fig
|
204 |
|
@@ -259,17 +259,17 @@ class Chat_Bot:
|
|
259 |
with gr.Row():
|
260 |
gr.HTML("""<center><h1>Sentiment and Emotion Score Graph</h1></center>""")
|
261 |
with gr.Row():
|
262 |
-
with gr.Column(scale=0.
|
263 |
-
plot =gr.Plot(label="Customer", size=(
|
264 |
-
# with gr.Row():
|
265 |
-
with gr.Column(scale=0.50, min_width=0):
|
266 |
-
plot_2 =gr.Plot(label="Agent", size=(300, 400))
|
267 |
with gr.Row():
|
268 |
-
with gr.Column(scale=0.
|
269 |
-
|
270 |
-
|
271 |
-
with gr.Column(scale=0.
|
272 |
-
|
|
|
|
|
|
|
273 |
|
274 |
|
275 |
txt_msg = txt.submit(self._add_text, [chatbot, txt], [chatbot, txt])
|
@@ -285,5 +285,5 @@ class Chat_Bot:
|
|
285 |
|
286 |
demo.title = "Vodafone Generative AI CRM ChatBot"
|
287 |
demo.launch()
|
288 |
-
|
289 |
-
|
|
|
85 |
summarizer = Summarizer()
|
86 |
sentiment = SentimentAnalyzer()
|
87 |
|
88 |
+
class LangChain_Document_QA:
|
89 |
|
90 |
def __init__(self):
|
91 |
pass
|
|
|
121 |
scores = sentiment_scores.values()
|
122 |
fig = px.bar(x=scores, y=labels, orientation='h', color=labels, color_discrete_map={"Negative": "red", "Positive": "green", "Neutral": "gray"})
|
123 |
fig.update_traces(texttemplate='%{x:.2f}%', textposition='outside')
|
124 |
+
fig.update_layout(height=500, width=200)
|
125 |
return fig
|
126 |
|
127 |
def _history_of_chat(self):
|
|
|
145 |
start_sequence = "\nCustomer:"
|
146 |
restart_sequence = "\nVodafone Customer Relationship Manager:"
|
147 |
prompt = 'your task is make a conversation between a customer and vodafone telecom customer relationship manager.'
|
148 |
+
file_path = "/content/vodafone_customer_details.json"
|
149 |
with open(file_path) as file:
|
150 |
customer_details = json.load(file)
|
151 |
+
prompt = f"{history}{start_sequence}{text}{restart_sequence} if customer ask any information take it from {customer_details} and if customer say thankyou You should end the conversation with greetings."
|
152 |
response = openai.Completion.create(
|
153 |
model="text-davinci-003",
|
154 |
prompt=prompt,
|
|
|
185 |
scores=self._text_box(customer_emotion,agent_emotion,agent_sentiment_score,customer_sentiment_score)
|
186 |
|
187 |
customer_fig=self._display_graph(customer_sentiment_score)
|
188 |
+
customer_fig.update_layout(title="Sentiment Analysis",width=800)
|
189 |
|
190 |
agent_fig=self._display_graph(agent_sentiment_score)
|
191 |
+
agent_fig.update_layout(title="Sentiment Analysis",width=800)
|
192 |
|
193 |
agent_emotion_score = sentiment.emotion_analysis_for_graph(agent_emotion)
|
194 |
|
195 |
agent_emotion_fig=self._display_graph(agent_emotion_score)
|
196 |
+
agent_emotion_fig.update_layout(title="Emotion Analysis",width=800)
|
197 |
|
198 |
customer_emotion_score = sentiment.emotion_analysis_for_graph(customer_emotion)
|
199 |
|
200 |
customer_emotion_fig=self._display_graph(customer_emotion_score)
|
201 |
+
customer_emotion_fig.update_layout(title="Emotion Analysis",width=800)
|
202 |
|
203 |
return scores,customer_fig,agent_fig,customer_emotion_fig,agent_emotion_fig
|
204 |
|
|
|
259 |
with gr.Row():
|
260 |
gr.HTML("""<center><h1>Sentiment and Emotion Score Graph</h1></center>""")
|
261 |
with gr.Row():
|
262 |
+
with gr.Column(scale=0.70, min_width=0):
|
263 |
+
plot =gr.Plot(label="Customer", size=(500, 600))
|
|
|
|
|
|
|
264 |
with gr.Row():
|
265 |
+
with gr.Column(scale=0.70, min_width=0):
|
266 |
+
plot_2 =gr.Plot(label="Agent", size=(500, 600))
|
267 |
+
with gr.Row():
|
268 |
+
with gr.Column(scale=0.70, min_width=0):
|
269 |
+
plot_3 =gr.Plot(label="Customer_Emotion", size=(500, 600))
|
270 |
+
with gr.Row():
|
271 |
+
with gr.Column(scale=0.70, min_width=0):
|
272 |
+
plot_4 =gr.Plot(label="Agent_Emotion", size=(500, 600))
|
273 |
|
274 |
|
275 |
txt_msg = txt.submit(self._add_text, [chatbot, txt], [chatbot, txt])
|
|
|
285 |
|
286 |
demo.title = "Vodafone Generative AI CRM ChatBot"
|
287 |
demo.launch()
|
288 |
+
document_qa =LangChain_Document_QA()
|
289 |
+
document_qa.gradio_interface()
|