Karthikeyan commited on
Commit
2f06aa2
β€’
1 Parent(s): 5e31da7

Upload app (7).py

Browse files
Files changed (1) hide show
  1. app (7).py +286 -0
app (7).py ADDED
@@ -0,0 +1,286 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ class SentimentAnalyzer:
3
+ def __init__(self):
4
+ self.model="facebook/bart-large-mnli"
5
+
6
+ def analyze_sentiment(self, text):
7
+ pipe = pipeline("zero-shot-classification", model=self.model)
8
+ label=["positive","negative","neutral"]
9
+ result = pipe(text, label)
10
+ sentiment_scores= {result['labels'][0]:result['scores'][0],result['labels'][1]:result['scores'][1],result['labels'][2]:result['scores'][2]}
11
+ sentiment_scores_str = f"Positive: {sentiment_scores['positive']:.2f}, Neutral: {sentiment_scores['neutral']:.2f}, Negative: {sentiment_scores['negative']:.2f}"
12
+ return sentiment_scores_str
13
+ def emotion_analysis(self,text):
14
+ prompt = f""" Your task is to analyze {text} and predict the emotion using scores. Emotions are categorized into the following list: Sadness, Happiness, Joy, Fear, Disgust, and Anger. You need to provide the emotion with the highest score. The scores should be in the range of 0.0 to 1.0, where 1.0 represents the highest intensity of the emotion.
15
+ Please analyze the text and provide the output in the following format: emotion: score [with one result having the highest score]."""
16
+ response = openai.Completion.create(
17
+ model="text-davinci-003",
18
+ prompt=prompt,
19
+ temperature=1,
20
+ max_tokens=60,
21
+ top_p=1,
22
+ frequency_penalty=0,
23
+ presence_penalty=0
24
+ )
25
+
26
+ message = response.choices[0].text.strip().replace("\n","")
27
+ print(message)
28
+ return message
29
+
30
+ def analyze_sentiment_for_graph(self, text):
31
+ pipe = pipeline("zero-shot-classification", model=self.model)
32
+ label=["positive", "negative", "neutral"]
33
+ result = pipe(text, label)
34
+ sentiment_scores = {
35
+ result['labels'][0]: result['scores'][0],
36
+ result['labels'][1]: result['scores'][1],
37
+ result['labels'][2]: result['scores'][2]
38
+ }
39
+ return sentiment_scores
40
+
41
+ def emotion_analysis_for_graph(self,text):
42
+
43
+ list_of_emotion=text.split(":")
44
+ label=list_of_emotion[0]
45
+ score=list_of_emotion[1]
46
+ score_dict={
47
+ label:float(score)
48
+ }
49
+ print(score_dict)
50
+ return score_dict
51
+
52
+ class Summarizer:
53
+ def __init__(self):
54
+ pass
55
+ def generate_summary(self, text):
56
+ model_engine = "text-davinci-003"
57
+ prompt = f"""summarize the following conversation delimited by triple backticks.
58
+ write within 30 words.
59
+ ```{text}``` """
60
+ completions = openai.Completion.create(
61
+ engine=model_engine,
62
+ prompt=prompt,
63
+ max_tokens=60,
64
+ n=1,
65
+ stop=None,
66
+ temperature=0.5,
67
+ )
68
+ message = completions.choices[0].text.strip()
69
+ return message
70
+
71
+
72
+ history_state = gr.State([])
73
+ summarizer = Summarizer()
74
+ sentiment = SentimentAnalyzer()
75
+
76
+ class LangChain_Document_QA:
77
+
78
+ def __init__(self):
79
+ pass
80
+ def _add_text(self,history, text):
81
+ history = history + [(text, None)]
82
+ history_state.value = history
83
+ return history,gr.update(value="", interactive=False)
84
+
85
+ def _agent_text(self,history, text):
86
+ response = text
87
+ history[-1][1] = response
88
+ history_state.value = history
89
+ return history
90
+
91
+ def _chat_history(self):
92
+ history = history_state.value
93
+ formatted_history = " "
94
+ for entry in history:
95
+ customer_text, agent_text = entry
96
+ formatted_history += f"Customer: {customer_text}\n"
97
+ if agent_text:
98
+ formatted_history += f"Agent: {agent_text}\n"
99
+ return formatted_history
100
+
101
+ def _display_history(self):
102
+ formatted_history=self._chat_history()
103
+ summary=summarizer.generate_summary(formatted_history)
104
+ return summary
105
+
106
+ def _display_graph(self,sentiment_scores):
107
+ labels = sentiment_scores.keys()
108
+ scores = sentiment_scores.values()
109
+ fig = px.bar(x=scores, y=labels, orientation='h', color=labels, color_discrete_map={"Negative": "red", "Positive": "green", "Neutral": "gray"})
110
+ fig.update_traces(texttemplate='%{x:.2f}%', textposition='outside')
111
+ fig.update_layout(height=500, width=200)
112
+ return fig
113
+
114
+ def _history_of_chat(self):
115
+ history = history_state.value
116
+ formatted_history = ""
117
+ client=""
118
+ agent=""
119
+ for entry in history:
120
+ customer_text, agent_text = entry
121
+ client+=customer_text
122
+ formatted_history += f"Customer: {customer_text}\n"
123
+ if agent_text:
124
+ agent+=agent_text
125
+ formatted_history += f"Agent: {agent_text}\n"
126
+ return client,agent
127
+
128
+
129
+ def _suggested_answer(self,text):
130
+ try:
131
+ history = self._chat_history()
132
+ start_sequence = "\nCustomer:"
133
+ restart_sequence = "\nVodafone Customer Relationship Manager:"
134
+ prompt = 'your task is make a conversation between a customer and vodafone telecom customer relationship manager.at end the conversation thanks for coming'
135
+ file_path = "/content/vodafone_customer_details.json"
136
+ with open(file_path) as file:
137
+ customer_details = json.load(file)
138
+ prompt = f"{history}{start_sequence}{text}{restart_sequence} if customer ask any information take it from {customer_details}."
139
+ response = openai.Completion.create(
140
+ model="text-davinci-003",
141
+ prompt=prompt,
142
+ temperature=0,
143
+ max_tokens=500,
144
+ top_p=1,
145
+ frequency_penalty=0,
146
+ presence_penalty=0.6,
147
+ )
148
+
149
+ message = response.choices[0].text.strip()
150
+ if ":" in message:
151
+ message = re.sub(r'^.*:', '', message)
152
+ return message.strip()
153
+ except:
154
+ return "I can't get the response"
155
+
156
+
157
+
158
+ def _text_box(self,customer_emotion,agent_emotion,agent_sentiment_score,customer_sentiment_score):
159
+ agent_score = ", ".join([f"{key}: {value:.2f}" for key, value in agent_sentiment_score.items()])
160
+ customer_score = ", ".join([f"{key}: {value:.2f}" for key, value in customer_sentiment_score.items()])
161
+ return f"customer_emotion:{customer_emotion}\nagent_emotion:{agent_emotion}\nAgent_Sentiment_score:{agent_score}\nCustomer_sentiment_score:{customer_score}"
162
+
163
+ def _on_sentiment_btn_click(self):
164
+ client,agent=self._history_of_chat()
165
+
166
+ customer_emotion=sentiment.emotion_analysis(client)
167
+ customer_sentiment_score = sentiment.analyze_sentiment_for_graph(client)
168
+
169
+ agent_emotion=sentiment.emotion_analysis(agent)
170
+ agent_sentiment_score = sentiment.analyze_sentiment_for_graph(agent)
171
+
172
+ scores=self._text_box(customer_emotion,agent_emotion,agent_sentiment_score,customer_sentiment_score)
173
+
174
+ customer_fig=self._display_graph(customer_sentiment_score)
175
+ customer_fig.update_layout(title="Sentiment Analysis",width=800)
176
+
177
+ agent_fig=self._display_graph(agent_sentiment_score)
178
+ agent_fig.update_layout(title="Sentiment Analysis",width=800)
179
+
180
+ agent_emotion_score = sentiment.emotion_analysis_for_graph(agent_emotion)
181
+
182
+ agent_emotion_fig=self._display_graph(agent_emotion_score)
183
+ agent_emotion_fig.update_layout(title="Emotion Analysis",width=800)
184
+
185
+ customer_emotion_score = sentiment.emotion_analysis_for_graph(customer_emotion)
186
+
187
+ customer_emotion_fig=self._display_graph(customer_emotion_score)
188
+ customer_emotion_fig.update_layout(title="Emotion Analysis",width=800)
189
+
190
+ return scores,customer_fig,agent_fig,customer_emotion_fig,agent_emotion_fig
191
+
192
+
193
+ def clear_func(self,history_state):
194
+ history_state.clear()
195
+
196
+
197
+ def gradio_interface(self):
198
+ with gr.Blocks(css="style.css",theme=gr.themes.Soft()) as demo:
199
+ with gr.Row():
200
+ gr.HTML("""<img class="leftimage" align="left" src="https://templates.images.credential.net/1612472097627370951721412474196.png" alt="Image" width="210" height="210">
201
+ <img align="right" class="rightimage" src="https://download.logo.wine/logo/Vodafone/Vodafone-Logo.wine.png" alt="Image" width="230" height="230" >""")
202
+
203
+ with gr.Row():
204
+ gr.HTML("""<center><h1>Vodafone Generative AI CRM ChatBot</h1></center>""")
205
+ gr.HTML(
206
+ """<br style="color:white;">"""
207
+ )
208
+ chatbot = gr.Chatbot([], elem_id="chatbot").style(height=300)
209
+ with gr.Row():
210
+ with gr.Column(scale=0.50):
211
+ txt = gr.Textbox(
212
+ show_label=False,
213
+ placeholder="Customer",
214
+ ).style(container=False)
215
+ with gr.Column(scale=0.50):
216
+ txt2 = gr.Textbox(
217
+ show_label=False,
218
+ placeholder="Agent",
219
+ ).style(container=False)
220
+
221
+ with gr.Column(scale=0.40):
222
+ txt3 =gr.Textbox(
223
+ show_label=False,
224
+ placeholder="GPT_Suggestion",
225
+ ).style(container=False)
226
+ with gr.Column(scale=0.10, min_width=0):
227
+ button=gr.Button(
228
+ value="πŸš€"
229
+ )
230
+ with gr.Row(scale=0.50):
231
+ emptyBtn = gr.Button(
232
+ "🧹 New Conversation",
233
+ )
234
+ with gr.Row():
235
+ with gr.Column(scale=0.40):
236
+ txt4 =gr.Textbox(
237
+ show_label=False,
238
+ lines=4,
239
+ placeholder="Summary",
240
+ ).style(container=False)
241
+ with gr.Column(scale=0.10, min_width=0):
242
+ end_btn=gr.Button(
243
+ value="End"
244
+ )
245
+ with gr.Column(scale=0.40):
246
+ txt5 =gr.Textbox(
247
+ show_label=False,
248
+ lines=4,
249
+ placeholder="Sentiment",
250
+ ).style(container=False)
251
+
252
+ with gr.Column(scale=0.10, min_width=0):
253
+ Sentiment_btn=gr.Button(
254
+ value="πŸ“Š",callback=self._on_sentiment_btn_click
255
+ )
256
+ with gr.Row():
257
+ gr.HTML("""<center><h1>Sentiment and Emotion Score Graph</h1></center>""")
258
+ with gr.Row():
259
+ with gr.Column(scale=0.70, min_width=0):
260
+ plot =gr.Plot(label="Customer", size=(500, 600))
261
+ with gr.Row():
262
+ with gr.Column(scale=0.70, min_width=0):
263
+ plot_2 =gr.Plot(label="Agent", size=(500, 600))
264
+ with gr.Row():
265
+ with gr.Column(scale=0.70, min_width=0):
266
+ plot_3 =gr.Plot(label="Customer_Emotion", size=(500, 600))
267
+ with gr.Row():
268
+ with gr.Column(scale=0.70, min_width=0):
269
+ plot_4 =gr.Plot(label="Agent_Emotion", size=(500, 600))
270
+
271
+
272
+ txt_msg = txt.submit(self._add_text, [chatbot, txt], [chatbot, txt])
273
+ txt_msg.then(lambda: gr.update(interactive=True), None, [txt])
274
+ txt.submit(self._suggested_answer,txt,txt3)
275
+ button.click(self._agent_text, [chatbot,txt3], chatbot)
276
+ txt2.submit(self._agent_text, [chatbot, txt2], chatbot).then(
277
+ self._agent_text, [chatbot, txt2], chatbot
278
+ )
279
+ end_btn.click(self._display_history, [], txt4)
280
+ emptyBtn.click(self.clear_func,history_state,[])
281
+ emptyBtn.click(lambda: None, None, chatbot, queue=False)
282
+
283
+ Sentiment_btn.click(self._on_sentiment_btn_click,[],[txt5,plot,plot_2,plot_3,plot_4])
284
+
285
+ demo.title = "Vodafone Generative AI CRM ChatBot"
286
+ demo.launch()