Karthikeyan
Update app.py
1f804e2
import logging
from typing import List
from pydantic import NoneStr
import os
from langchain.chains.question_answering import load_qa_chain
from langchain.document_loaders import UnstructuredFileLoader
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.llms import OpenAI
from langchain.text_splitter import CharacterTextSplitter
from langchain.vectorstores import FAISS
import gradio as gr
import openai
from langchain import PromptTemplate, OpenAI, LLMChain
import validators
import requests
import mimetypes
import tempfile
import pandas as pd
import re
class DocumentQA:
def get_empty_state(self):
""" Create empty Knowledge base"""
return {"knowledge_base": None}
def get_content_from_url(self,url:str)->List:
"""
Uploads a file from a given URL and returns the loaded document.
Args:
url (str): The URL of the file to be uploaded.
Returns:
Document: The loaded document.
Raises:
ValueError: If the URL is not valid or the file cannot be fetched.
"""
if validators.url(url):
headers = {'user-agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/114.0.0.0 Safari/537.36',}
r = requests.get(url,headers=headers)
if r.status_code != 200:
raise ValueError(
"Check the url of your file; returned status code %s" % r.status_code
)
content_type = r.headers.get("content-type")
file_extension = mimetypes.guess_extension(content_type)
temp_file = tempfile.NamedTemporaryFile(suffix=file_extension, delete=False)
temp_file.write(r.content)
file_path = temp_file.name
loader = UnstructuredFileLoader(file_path, strategy="fast")
docs = loader.load()
return docs
else:
raise ValueError("Please enter a valid URL")
def create_knowledge_base(self,docs):
"""Create a knowledge base from the given documents.
Args:
docs (List[str]): List of documents.
Returns:
FAISS: Knowledge base built from the documents.
"""
# Initialize a CharacterTextSplitter to split the documents into chunks
# Each chunk has a maximum length of 500 characters
# There is no overlap between the chunks
text_splitter = CharacterTextSplitter(
separator="\n", chunk_size=500, chunk_overlap=100, length_function=len
)
# Split the documents into chunks using the text_splitter
chunks = text_splitter.split_documents(docs)
# Initialize an OpenAIEmbeddings model to compute embeddings of the chunks
embeddings = OpenAIEmbeddings()
# Build a knowledge base using FAISS from the chunks and their embeddings
knowledge_base = FAISS.from_documents(chunks, embeddings)
# Return the resulting knowledge base
return knowledge_base
def get_chemicals_for_url(self,urls:str,state,input_qus)->str:
"""
Retrieves chemicals from the provided URLs.
Args:
urls (str): Comma-separated URLs of the files to be processed.
Returns:
str: The extracted chemical names.
Raises:
ValueError: If an error occurs during the process.
"""
webpage_text =[]
for url in urls.split(','):
webpage_text.extend(self.get_content_from_url(url))
knowledge_base = self.create_knowledge_base(webpage_text)
state = {"knowledge_base": knowledge_base}
chemicals = self.get_chemicals_for_file(state,input_qus)
return chemicals
def file_path_show(self,file_paths):
file_paths = [single_file_path.name for single_file_path in file_paths]
return file_paths
def get_chemicals_for_file(self,state,question):
knowledge_base = state["knowledge_base"]
# Set the question for which we want to find the answer
# question = "Identify the Chemical Capabilities Only"
# Perform a similarity search on the knowledge base to retrieve relevant documents
docs = knowledge_base.similarity_search(question)
# Initialize an OpenAI language model for question answering
template = """Use the following pieces of context to answer the question at the end. If you don't know the answer, just say that you don't know, don't try to make up an answer.
Identify the Chemical Capabilities Only.
{context}
Question :{question}.
The result should be in bullet points format.
"""
prompt = PromptTemplate(template=template,input_variables=["context","question"])
llm = OpenAI(temperature=0.4)
llm_chain = LLMChain(prompt=prompt, llm=llm)
# Load a question-answering chain using the language model
chain = load_qa_chain(llm, chain_type="stuff",prompt=prompt)
# Run the question-answering chain on the input documents and question
response = chain.run(input_documents=docs, question=question)
# Return the response as the answer to the question
return response
def identify_chemicals_in_files(self,file_paths,state,question):
"""Upload a file and create a knowledge base from its contents.
Args:
file_paths : The files to uploaded.
Returns:
tuple: A tuple containing the file name and the knowledge base.
"""
file_paths = [single_file_path.name for single_file_path in file_paths]
docs =[]
for file_obj in file_paths:
loader = UnstructuredFileLoader(file_obj, strategy="fast")
# Load the contents of the file using the loader
docs.extend(loader.load())
# Create a knowledge base from the loaded documents using the create_knowledge_base() method
knowledge_base = self.create_knowledge_base(docs)
state = {"knowledge_base": knowledge_base}
pdf_name = os.path.basename(file_obj)
final_ans = self.get_chemicals_for_file(state,question)
# Return a tuple containing the file name and the knowledge base
return final_ans
def get_final_result(self,urls,file_paths,state,input_qus):
if urls:
if file_paths:
urls_chemicals = self.get_chemicals_for_url(urls,state,input_qus)
file_chemicals = self.identify_chemicals_in_files(file_paths,state,input_qus)
chemicals = urls_chemicals + file_chemicals
return chemicals
else:
urls_chemicals = self.get_chemicals_for_url(urls,state,input_qus)
return urls_chemicals
elif file_paths:
file_chemicals = self.identify_chemicals_in_files(file_paths,state,input_qus)
return file_chemicals
else:
return "No Files Uploaded"
document_qa = DocumentQA()
class ChemicalIdentifier:
def __init__(self):
openai.api_key = os.getenv("OPENAI_API_KEY")
# os.environ['OPENAI_API_KEY'] = openai_api_key
def get_empty_state(self):
""" Create empty Knowledge base"""
return {"knowledge_base": None}
def get_content_from_url(self,url:str)->List:
"""
Uploads a file from a given URL and returns the loaded document.
Args:
url (str): The URL of the file to be uploaded.
Returns:
Document: The loaded document.
Raises:
ValueError: If the URL is not valid or the file cannot be fetched.
"""
if validators.url(url):
headers = {'user-agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/114.0.0.0 Safari/537.36',}
r = requests.get(url,headers=headers)
if r.status_code != 200:
raise ValueError(
"Check the url of your file; returned status code %s" % r.status_code
)
content_type = r.headers.get("content-type")
file_extension = mimetypes.guess_extension(content_type)
temp_file = tempfile.NamedTemporaryFile(suffix=file_extension, delete=False)
temp_file.write(r.content)
file_path = temp_file.name
loader = UnstructuredFileLoader(file_path, strategy="fast")
docs = loader.load()
return docs
else:
raise ValueError("Please enter a valid URL")
def create_knowledge_base(self,docs):
"""Create a knowledge base from the given documents.
Args:
docs (List[str]): List of documents.
Returns:
FAISS: Knowledge base built from the documents.
"""
# Initialize a CharacterTextSplitter to split the documents into chunks
# Each chunk has a maximum length of 500 characters
# There is no overlap between the chunks
text_splitter = CharacterTextSplitter(
separator="\n", chunk_size=1000, chunk_overlap=200, length_function=len
)
# Split the documents into chunks using the text_splitter
chunks = text_splitter.split_documents(docs)
# Initialize an OpenAIEmbeddings model to compute embeddings of the chunks
embeddings = OpenAIEmbeddings()
# Build a knowledge base using FAISS from the chunks and their embeddings
knowledge_base = FAISS.from_documents(chunks, embeddings)
# Return the resulting knowledge base
return knowledge_base
def get_chemicals_for_url(self,urls:str,state)->str:
"""
Retrieves chemicals from the provided URLs.
Args:
urls (str): Comma-separated URLs of the files to be processed.
Returns:
str: The extracted chemical names.
Raises:
ValueError: If an error occurs during the process.
"""
total_chemical=[]
for url in urls.split(','):
webpage_text = self.get_content_from_url(url)
knowledge_base = self.create_knowledge_base(webpage_text)
state = {"knowledge_base": knowledge_base}
chemicals = self.get_chemicals_for_file(state)
total_chemical.append(str(url)+"\n"+chemicals+"\n\n")
list_of_chemicals = "".join(total_chemical)
return list_of_chemicals
def file_path_show(self,file_paths):
file_paths = [single_file_path.name for single_file_path in file_paths]
return file_paths
def get_chemicals_for_file(self,state):
knowledge_base = state["knowledge_base"]
# Set the question for which we want to find the answer
question = "list out chemicals.Result should be in bullet form"
# Perform a similarity search on the knowledge base to retrieve relevant documents
docs = knowledge_base.similarity_search(question)
# Initialize an OpenAI language model for question answering
# template = """Use the following pieces of context to answer the question at the end. If you don't know the answer, just say that you don't know, don't try to make up an answer.
# list out all the chemical names.
# {context}
# Question :{question}.
# The result should be in bullet points format.
# """
# prompt = PromptTemplate(template=template,input_variables=["context","question"])
llm = OpenAI(temperature=0.4)
# Load a question-answering chain using the language model
chain = load_qa_chain(llm, chain_type="stuff")
# Run the question-answering chain on the input documents and question
response = chain.run(input_documents=docs, question=question)
# Return the response as the answer to the question
return response
def identify_chemicals_in_files(self,file_paths,state):
"""Upload a file and create a knowledge base from its contents.
Args:
file_paths : The files to uploaded.
Returns:
tuple: A tuple containing the file name and the knowledge base.
"""
file_paths = [single_file_path.name for single_file_path in file_paths]
results =''
for file_obj in file_paths:
loader = UnstructuredFileLoader(file_obj, strategy="fast")
# Load the contents of the file using the loader
docs =loader.load()
# Create a knowledge base from the loaded documents using the create_knowledge_base() method
knowledge_base = self.create_knowledge_base(docs)
state = {"knowledge_base": knowledge_base}
pdf_name = os.path.basename(file_obj)
final_ans = self.get_chemicals_for_file(state)
results += pdf_name+"\n"+final_ans+"\n\n"
# Return a tuple containing the file name and the knowledge base
return results
def get_final_result(self,urls,file_paths,state):
if urls:
if file_paths:
urls_chemicals = self.get_chemicals_for_url(urls,state)
file_chemicals = self.identify_chemicals_in_files(file_paths,state)
chemicals = urls_chemicals + file_chemicals
return chemicals
else:
urls_chemicals = self.get_chemicals_for_url(urls,state)
return urls_chemicals
elif file_paths:
file_chemicals = self.identify_chemicals_in_files(file_paths,state)
return file_chemicals
else:
return "No Files Uploaded"
def gradio_interface(self)->None:
"""
Starts the Gradio interface for chemical identification.
"""
with gr.Blocks(css="style.css",theme='karthikeyan-adople/hudsonhayes-gray') as demo:
gr.HTML("""<center class="darkblue" style='background-color:rgb(0,1,36); text-align:center;padding:25px;'><center><h1 class ="center">
- <img src="file=logo.png" height="110px" width="280px"></h1></center>
- <br><h1 style="color:#fff">Chemical Capability Identifier</h1></center>""")
state = gr.State(self.get_empty_state())
with gr.Column(elem_id="col-container"):
with gr.Row(elem_id="row-flex"):
url = gr.Textbox(label="URL")
with gr.Row(elem_id="row-flex"):
with gr.Accordion("Upload Files", open = False):
with gr.Row():
with gr.Column(scale=0.90, min_width=160):
file_output = gr.File()
with gr.Column(scale=0.10, min_width=160):
upload_button = gr.UploadButton(
"Browse File", file_types=[".txt", ".pdf", ".doc", ".docx"],
file_count = "multiple",variant="primary")
with gr.Row():
with gr.Column(scale=1, min_width=0):
compare_btn = gr.Button(value="Generate Analysis",variant="primary")
with gr.Row():
with gr.Column(scale=1, min_width=0):
compared_result = gr.Textbox(value="",label='Chemical Capabilities :',show_label=True, placeholder="",lines=10)
with gr.Row():
with gr.Column(scale=1, min_width=0):
input_qus = gr.Textbox(value="",label='Question :',show_label=True, placeholder="")
with gr.Row():
with gr.Column(scale=1, min_width=0):
find_answer = gr.Button(value="Find Answer",label='Find',show_label=True, placeholder="")
with gr.Row():
with gr.Column(scale=1, min_width=0):
output = gr.Textbox(value="",label='Answer:',show_label=True, placeholder="")
upload_button.upload(self.file_path_show, upload_button, [file_output])
compare_btn.click(self.get_final_result,[url,upload_button,state],compared_result)
find_answer.click(document_qa.get_final_result,[url,upload_button,state,input_qus],output)
demo.launch(debug=True)
if __name__ == "__main__":
chemical_identifier = ChemicalIdentifier()
chemical_identifier.gradio_interface()