File size: 16,324 Bytes
0782294 dce8568 e8c317c 0782294 e8c317c 0782294 dce8568 0782294 dce8568 0782294 dce8568 0782294 dce8568 0782294 dce8568 0782294 dce8568 0782294 0ba93c6 8155afc dce8568 8155afc dce8568 0ba93c6 dce8568 0ba93c6 8155afc dce8568 8155afc dce8568 0782294 dce8568 0782294 dce8568 e8c317c dce8568 0782294 62d5cd1 0782294 dce8568 0782294 dce8568 0782294 dce8568 0782294 dce8568 0782294 e8c317c 0782294 e8c317c dce8568 e8c317c 62d5cd1 e8c317c dce8568 62d5cd1 dce8568 e8c317c dce8568 e8c317c dce8568 e8c317c dce8568 e8c317c 0782294 f915301 3418783 1f804e2 3418783 e8c317c dce8568 e8c317c e614a79 dce8568 e614a79 dce8568 e8c317c e614a79 dce8568 e614a79 dce8568 e614a79 e8c317c dce8568 0782294 e8c317c 0782294 30b8f16 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 |
import logging
from typing import List
from pydantic import NoneStr
import os
from langchain.chains.question_answering import load_qa_chain
from langchain.document_loaders import UnstructuredFileLoader
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.llms import OpenAI
from langchain.text_splitter import CharacterTextSplitter
from langchain.vectorstores import FAISS
import gradio as gr
import openai
from langchain import PromptTemplate, OpenAI, LLMChain
import validators
import requests
import mimetypes
import tempfile
import pandas as pd
import re
class DocumentQA:
def get_empty_state(self):
""" Create empty Knowledge base"""
return {"knowledge_base": None}
def get_content_from_url(self,url:str)->List:
"""
Uploads a file from a given URL and returns the loaded document.
Args:
url (str): The URL of the file to be uploaded.
Returns:
Document: The loaded document.
Raises:
ValueError: If the URL is not valid or the file cannot be fetched.
"""
if validators.url(url):
headers = {'user-agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/114.0.0.0 Safari/537.36',}
r = requests.get(url,headers=headers)
if r.status_code != 200:
raise ValueError(
"Check the url of your file; returned status code %s" % r.status_code
)
content_type = r.headers.get("content-type")
file_extension = mimetypes.guess_extension(content_type)
temp_file = tempfile.NamedTemporaryFile(suffix=file_extension, delete=False)
temp_file.write(r.content)
file_path = temp_file.name
loader = UnstructuredFileLoader(file_path, strategy="fast")
docs = loader.load()
return docs
else:
raise ValueError("Please enter a valid URL")
def create_knowledge_base(self,docs):
"""Create a knowledge base from the given documents.
Args:
docs (List[str]): List of documents.
Returns:
FAISS: Knowledge base built from the documents.
"""
# Initialize a CharacterTextSplitter to split the documents into chunks
# Each chunk has a maximum length of 500 characters
# There is no overlap between the chunks
text_splitter = CharacterTextSplitter(
separator="\n", chunk_size=500, chunk_overlap=100, length_function=len
)
# Split the documents into chunks using the text_splitter
chunks = text_splitter.split_documents(docs)
# Initialize an OpenAIEmbeddings model to compute embeddings of the chunks
embeddings = OpenAIEmbeddings()
# Build a knowledge base using FAISS from the chunks and their embeddings
knowledge_base = FAISS.from_documents(chunks, embeddings)
# Return the resulting knowledge base
return knowledge_base
def get_chemicals_for_url(self,urls:str,state,input_qus)->str:
"""
Retrieves chemicals from the provided URLs.
Args:
urls (str): Comma-separated URLs of the files to be processed.
Returns:
str: The extracted chemical names.
Raises:
ValueError: If an error occurs during the process.
"""
webpage_text =[]
for url in urls.split(','):
webpage_text.extend(self.get_content_from_url(url))
knowledge_base = self.create_knowledge_base(webpage_text)
state = {"knowledge_base": knowledge_base}
chemicals = self.get_chemicals_for_file(state,input_qus)
return chemicals
def file_path_show(self,file_paths):
file_paths = [single_file_path.name for single_file_path in file_paths]
return file_paths
def get_chemicals_for_file(self,state,question):
knowledge_base = state["knowledge_base"]
# Set the question for which we want to find the answer
# question = "Identify the Chemical Capabilities Only"
# Perform a similarity search on the knowledge base to retrieve relevant documents
docs = knowledge_base.similarity_search(question)
# Initialize an OpenAI language model for question answering
template = """Use the following pieces of context to answer the question at the end. If you don't know the answer, just say that you don't know, don't try to make up an answer.
Identify the Chemical Capabilities Only.
{context}
Question :{question}.
The result should be in bullet points format.
"""
prompt = PromptTemplate(template=template,input_variables=["context","question"])
llm = OpenAI(temperature=0.4)
llm_chain = LLMChain(prompt=prompt, llm=llm)
# Load a question-answering chain using the language model
chain = load_qa_chain(llm, chain_type="stuff",prompt=prompt)
# Run the question-answering chain on the input documents and question
response = chain.run(input_documents=docs, question=question)
# Return the response as the answer to the question
return response
def identify_chemicals_in_files(self,file_paths,state,question):
"""Upload a file and create a knowledge base from its contents.
Args:
file_paths : The files to uploaded.
Returns:
tuple: A tuple containing the file name and the knowledge base.
"""
file_paths = [single_file_path.name for single_file_path in file_paths]
docs =[]
for file_obj in file_paths:
loader = UnstructuredFileLoader(file_obj, strategy="fast")
# Load the contents of the file using the loader
docs.extend(loader.load())
# Create a knowledge base from the loaded documents using the create_knowledge_base() method
knowledge_base = self.create_knowledge_base(docs)
state = {"knowledge_base": knowledge_base}
pdf_name = os.path.basename(file_obj)
final_ans = self.get_chemicals_for_file(state,question)
# Return a tuple containing the file name and the knowledge base
return final_ans
def get_final_result(self,urls,file_paths,state,input_qus):
if urls:
if file_paths:
urls_chemicals = self.get_chemicals_for_url(urls,state,input_qus)
file_chemicals = self.identify_chemicals_in_files(file_paths,state,input_qus)
chemicals = urls_chemicals + file_chemicals
return chemicals
else:
urls_chemicals = self.get_chemicals_for_url(urls,state,input_qus)
return urls_chemicals
elif file_paths:
file_chemicals = self.identify_chemicals_in_files(file_paths,state,input_qus)
return file_chemicals
else:
return "No Files Uploaded"
document_qa = DocumentQA()
class ChemicalIdentifier:
def __init__(self):
openai.api_key = os.getenv("OPENAI_API_KEY")
# os.environ['OPENAI_API_KEY'] = openai_api_key
def get_empty_state(self):
""" Create empty Knowledge base"""
return {"knowledge_base": None}
def get_content_from_url(self,url:str)->List:
"""
Uploads a file from a given URL and returns the loaded document.
Args:
url (str): The URL of the file to be uploaded.
Returns:
Document: The loaded document.
Raises:
ValueError: If the URL is not valid or the file cannot be fetched.
"""
if validators.url(url):
headers = {'user-agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/114.0.0.0 Safari/537.36',}
r = requests.get(url,headers=headers)
if r.status_code != 200:
raise ValueError(
"Check the url of your file; returned status code %s" % r.status_code
)
content_type = r.headers.get("content-type")
file_extension = mimetypes.guess_extension(content_type)
temp_file = tempfile.NamedTemporaryFile(suffix=file_extension, delete=False)
temp_file.write(r.content)
file_path = temp_file.name
loader = UnstructuredFileLoader(file_path, strategy="fast")
docs = loader.load()
return docs
else:
raise ValueError("Please enter a valid URL")
def create_knowledge_base(self,docs):
"""Create a knowledge base from the given documents.
Args:
docs (List[str]): List of documents.
Returns:
FAISS: Knowledge base built from the documents.
"""
# Initialize a CharacterTextSplitter to split the documents into chunks
# Each chunk has a maximum length of 500 characters
# There is no overlap between the chunks
text_splitter = CharacterTextSplitter(
separator="\n", chunk_size=1000, chunk_overlap=200, length_function=len
)
# Split the documents into chunks using the text_splitter
chunks = text_splitter.split_documents(docs)
# Initialize an OpenAIEmbeddings model to compute embeddings of the chunks
embeddings = OpenAIEmbeddings()
# Build a knowledge base using FAISS from the chunks and their embeddings
knowledge_base = FAISS.from_documents(chunks, embeddings)
# Return the resulting knowledge base
return knowledge_base
def get_chemicals_for_url(self,urls:str,state)->str:
"""
Retrieves chemicals from the provided URLs.
Args:
urls (str): Comma-separated URLs of the files to be processed.
Returns:
str: The extracted chemical names.
Raises:
ValueError: If an error occurs during the process.
"""
total_chemical=[]
for url in urls.split(','):
webpage_text = self.get_content_from_url(url)
knowledge_base = self.create_knowledge_base(webpage_text)
state = {"knowledge_base": knowledge_base}
chemicals = self.get_chemicals_for_file(state)
total_chemical.append(str(url)+"\n"+chemicals+"\n\n")
list_of_chemicals = "".join(total_chemical)
return list_of_chemicals
def file_path_show(self,file_paths):
file_paths = [single_file_path.name for single_file_path in file_paths]
return file_paths
def get_chemicals_for_file(self,state):
knowledge_base = state["knowledge_base"]
# Set the question for which we want to find the answer
question = "list out chemicals.Result should be in bullet form"
# Perform a similarity search on the knowledge base to retrieve relevant documents
docs = knowledge_base.similarity_search(question)
# Initialize an OpenAI language model for question answering
# template = """Use the following pieces of context to answer the question at the end. If you don't know the answer, just say that you don't know, don't try to make up an answer.
# list out all the chemical names.
# {context}
# Question :{question}.
# The result should be in bullet points format.
# """
# prompt = PromptTemplate(template=template,input_variables=["context","question"])
llm = OpenAI(temperature=0.4)
# Load a question-answering chain using the language model
chain = load_qa_chain(llm, chain_type="stuff")
# Run the question-answering chain on the input documents and question
response = chain.run(input_documents=docs, question=question)
# Return the response as the answer to the question
return response
def identify_chemicals_in_files(self,file_paths,state):
"""Upload a file and create a knowledge base from its contents.
Args:
file_paths : The files to uploaded.
Returns:
tuple: A tuple containing the file name and the knowledge base.
"""
file_paths = [single_file_path.name for single_file_path in file_paths]
results =''
for file_obj in file_paths:
loader = UnstructuredFileLoader(file_obj, strategy="fast")
# Load the contents of the file using the loader
docs =loader.load()
# Create a knowledge base from the loaded documents using the create_knowledge_base() method
knowledge_base = self.create_knowledge_base(docs)
state = {"knowledge_base": knowledge_base}
pdf_name = os.path.basename(file_obj)
final_ans = self.get_chemicals_for_file(state)
results += pdf_name+"\n"+final_ans+"\n\n"
# Return a tuple containing the file name and the knowledge base
return results
def get_final_result(self,urls,file_paths,state):
if urls:
if file_paths:
urls_chemicals = self.get_chemicals_for_url(urls,state)
file_chemicals = self.identify_chemicals_in_files(file_paths,state)
chemicals = urls_chemicals + file_chemicals
return chemicals
else:
urls_chemicals = self.get_chemicals_for_url(urls,state)
return urls_chemicals
elif file_paths:
file_chemicals = self.identify_chemicals_in_files(file_paths,state)
return file_chemicals
else:
return "No Files Uploaded"
def gradio_interface(self)->None:
"""
Starts the Gradio interface for chemical identification.
"""
with gr.Blocks(css="style.css",theme='karthikeyan-adople/hudsonhayes-gray') as demo:
gr.HTML("""<center class="darkblue" style='background-color:rgb(0,1,36); text-align:center;padding:25px;'><center><h1 class ="center">
- <img src="file=logo.png" height="110px" width="280px"></h1></center>
- <br><h1 style="color:#fff">Chemical Capability Identifier</h1></center>""")
state = gr.State(self.get_empty_state())
with gr.Column(elem_id="col-container"):
with gr.Row(elem_id="row-flex"):
url = gr.Textbox(label="URL")
with gr.Row(elem_id="row-flex"):
with gr.Accordion("Upload Files", open = False):
with gr.Row():
with gr.Column(scale=0.90, min_width=160):
file_output = gr.File()
with gr.Column(scale=0.10, min_width=160):
upload_button = gr.UploadButton(
"Browse File", file_types=[".txt", ".pdf", ".doc", ".docx"],
file_count = "multiple",variant="primary")
with gr.Row():
with gr.Column(scale=1, min_width=0):
compare_btn = gr.Button(value="Generate Analysis",variant="primary")
with gr.Row():
with gr.Column(scale=1, min_width=0):
compared_result = gr.Textbox(value="",label='Chemical Capabilities :',show_label=True, placeholder="",lines=10)
with gr.Row():
with gr.Column(scale=1, min_width=0):
input_qus = gr.Textbox(value="",label='Question :',show_label=True, placeholder="")
with gr.Row():
with gr.Column(scale=1, min_width=0):
find_answer = gr.Button(value="Find Answer",label='Find',show_label=True, placeholder="")
with gr.Row():
with gr.Column(scale=1, min_width=0):
output = gr.Textbox(value="",label='Answer:',show_label=True, placeholder="")
upload_button.upload(self.file_path_show, upload_button, [file_output])
compare_btn.click(self.get_final_result,[url,upload_button,state],compared_result)
find_answer.click(document_qa.get_final_result,[url,upload_button,state,input_qus],output)
demo.launch(debug=True)
if __name__ == "__main__":
chemical_identifier = ChemicalIdentifier()
chemical_identifier.gradio_interface() |