hra's picture
Update app.py
347a429
import json
import requests
import gradio as gr
import random
import time
import os
import datetime
from datetime import datetime
from PIL import Image
from PIL import ImageOps
from PIL import Image, ImageDraw, ImageFont
from textwrap import wrap
import json
from io import BytesIO
import re
print('for update')
API_TOKEN = os.getenv("API_TOKEN")
HRA_TOKEN=os.getenv("HRA_TOKEN")
from huggingface_hub import InferenceApi
#inference = InferenceApi("bigscience/bloom",token=API_TOKEN)
inference = InferenceApi("bigscience/bloomz",token=API_TOKEN)
headers = {'Content-type': 'application/json', 'Accept': 'text/plain'}
url_hraprompts='https://us-central1-createinsightsproject.cloudfunctions.net/gethrahfprompts'
data={"prompt_type":'stable_diffusion_tee_shirt_text',"hra_token":HRA_TOKEN}
try:
r = requests.post(url_hraprompts, data=json.dumps(data), headers=headers)
except requests.exceptions.ReadTimeout as e:
print(e)
#print(r.content)
prompt_text=str(r.content, 'UTF-8')
print(prompt_text)
data={"prompt_type":'stable_diffusion_tee_shirt_image',"hra_token":HRA_TOKEN}
try:
r = requests.post(url_hraprompts, data=json.dumps(data), headers=headers)
except requests.exceptions.ReadTimeout as e:
print(e)
#print(r.content)
prompt_image=str(r.content, 'UTF-8')
print(prompt_image)
ENDPOINT_URL="https://api-inference.huggingface.co/models/stabilityai/stable-diffusion-2-1" # url of your endpoint
HF_TOKEN=API_TOKEN
response_nsfw = requests.get('https://github.com/coffee-and-fun/google-profanity-words/raw/main/data/list.txt')
data_nsfw = response_nsfw.text
nsfwlist=data_nsfw.split('\n')
nsfwlowerlist=[]
for each in nsfwlist:
if each!='':
nsfwlowerlist.append(each.lower())
nsfwlowerlist.extend(['bra','gay','lesbian',])
data={"prompt_type":'stable_diffusion_negative_prompt',"hra_token":HRA_TOKEN}
try:
r = requests.post(url_hraprompts, data=json.dumps(data), headers=headers)
except requests.exceptions.ReadTimeout as e:
print(e)
#print(r.content)
neg_prompt=str(r.content, 'UTF-8')
print(neg_prompt)
def generate_image(prompt_SD:str):
print(prompt_SD)
payload = {"inputs": prompt_SD,"seed":random.randint(0,1000),"negative_prompt":neg_prompt,"parameters": {
"width": 768,
"height": 768,
}}
headers = {
"Authorization": f"Bearer {HF_TOKEN}",
"Content-Type": "application/json",
"Accept": "image/png" # important to get an image back
}
response = requests.post(ENDPOINT_URL, headers=headers, json=payload)
#print(response.content)
img = Image.open(BytesIO(response.content))
return img
def infer(prompt,
max_length = 250,
top_k = 0,
num_beams = 0,
no_repeat_ngram_size = 2,
top_p = 0.9,
seed=42,
temperature=0.7,
greedy_decoding = False,
return_full_text = False):
print('Empty input')
print(prompt)
top_k = None if top_k == 0 else top_k
do_sample = False if num_beams > 0 else not greedy_decoding
num_beams = None if (greedy_decoding or num_beams == 0) else num_beams
no_repeat_ngram_size = None if num_beams is None else no_repeat_ngram_size
top_p = None if num_beams else top_p
early_stopping = None if num_beams is None else num_beams > 0
params = {
"max_new_tokens": max_length,
"top_k": top_k,
"top_p": top_p,
"temperature": temperature,
"do_sample": do_sample,
"seed": seed,
"early_stopping":early_stopping,
"no_repeat_ngram_size":no_repeat_ngram_size,
"num_beams":num_beams,
"return_full_text":return_full_text,
"raw_response":True
}
s = time.time()
response = inference(prompt, params=params)
print(response)
proc_time = time.time()-s
#print(f"Processing time was {proc_time} seconds")
return response
def getadline(text_inp):
print(text_inp)
print(datetime.today().strftime("%d-%m-%Y"))
text = prompt_text+"\nInput:"+text_inp + "\nOutput:"
resp = infer(text,seed=random.randint(0,100))
generated_text=resp[0]['generated_text']
result = generated_text.replace(text,'').strip()
result = result.replace("Output:","")
parts = result.split("###")
topic = parts[0].strip()
topic="\n".join(topic.split('\n'))
print(topic)
mainstring=text_inp
foundnsfw=0
for each_word in nsfwlowerlist:
raw_search_string = r"\b" + each_word + r"\b"
match_output = re.search(raw_search_string, mainstring)
no_match_was_found = ( match_output is None )
if no_match_was_found:
foundnsfw=0
else:
foundnsfw=1
print(each_word)
break
if foundnsfw==1:
topic="Unsafe content found. Please try again with different prompts."
print(topic)
return(topic)
def getadvertisement(topic):
if topic!='':
mainstring=topic
foundnsfw=0
for each_word in nsfwlowerlist:
raw_search_string = r"\b" + each_word + r"\b"
match_output = re.search(raw_search_string, mainstring)
no_match_was_found = ( match_output is None )
if no_match_was_found:
foundnsfw=0
else:
foundnsfw=1
print(each_word)
break
if foundnsfw==1:
topic="Unsafe content found. Please try again with different prompts."
print(topic)
input_keyword=topic
else:
input_keyword=getadline(random.choice('abcdefghijklmnopqrstuvwxyz'))
if 'Unsafe content found' in input_keyword:
input_keyword='Abstract art with a splash of colors'
print(input_keyword)
print(datetime.today().strftime("%d-%m-%Y"))
prompt_SD=input_keyword+' '+prompt_image
# generate image
image = generate_image(prompt_SD)
# save to disk
image.save("finalimage.png")
image = generate_image(prompt_SD)
# save to disk
image.save("finalimage1.png")
return 'finalimage.png',"finalimage1.png"
with gr.Blocks() as demo:
gr.Markdown("<h1><center>T-Shirt Design Generator</center></h1>")
gr.Markdown(
"""Enter a prompt and get the t-shirt design. Use examples as a guide. \nImage generation via Stable Diffusion 2. When a prompt is not provided the powerful AI model bigscience/bloom is used to generate it.\nNote: If there is an error message just try after 30 secs"""
)
with gr.Row() as row:
with gr.Column():
textbox = gr.Textbox(placeholder="Enter prompt...", lines=1,label='Your prompt (Optional)')
btn = gr.Button("Generate")
examples = gr.Examples(examples=['Batman in John Wick style','intricate skull concept art','heavy metal band album cover','abstract art of plants',],
inputs=[textbox])
with gr.Column():
output_image1 = gr.components.Image(label="Your t-shirt")
with gr.Column():
output_image2 = gr.components.Image(label="Your t-shirt")
btn.click(getadvertisement,inputs=[textbox], outputs=[output_image1,output_image2])
demo.launch()