Spaces:
Runtime error
Runtime error
import json | |
import requests | |
import gradio as gr | |
import random | |
import time | |
import os | |
import datetime | |
from datetime import datetime | |
from PIL import Image | |
from PIL import ImageOps | |
from PIL import Image, ImageDraw, ImageFont | |
from textwrap import wrap | |
import json | |
from io import BytesIO | |
import re | |
print('for update') | |
API_TOKEN = os.getenv("API_TOKEN") | |
HRA_TOKEN=os.getenv("HRA_TOKEN") | |
from huggingface_hub import InferenceApi | |
#inference = InferenceApi("bigscience/bloom",token=API_TOKEN) | |
inference = InferenceApi("bigscience/bloomz",token=API_TOKEN) | |
headers = {'Content-type': 'application/json', 'Accept': 'text/plain'} | |
url_hraprompts='https://us-central1-createinsightsproject.cloudfunctions.net/gethrahfprompts' | |
data={"prompt_type":'stable_diffusion_tee_shirt_text',"hra_token":HRA_TOKEN} | |
try: | |
r = requests.post(url_hraprompts, data=json.dumps(data), headers=headers) | |
except requests.exceptions.ReadTimeout as e: | |
print(e) | |
#print(r.content) | |
prompt_text=str(r.content, 'UTF-8') | |
print(prompt_text) | |
data={"prompt_type":'stable_diffusion_tee_shirt_image',"hra_token":HRA_TOKEN} | |
try: | |
r = requests.post(url_hraprompts, data=json.dumps(data), headers=headers) | |
except requests.exceptions.ReadTimeout as e: | |
print(e) | |
#print(r.content) | |
prompt_image=str(r.content, 'UTF-8') | |
print(prompt_image) | |
ENDPOINT_URL="https://api-inference.huggingface.co/models/stabilityai/stable-diffusion-2-1" # url of your endpoint | |
#ENDPOINT_URL="https://api-inference.huggingface.co/models/stabilityai/stable-diffusion-1-5" # url of your endpoint | |
HF_TOKEN=API_TOKEN# token where you deployed your endpoint | |
neg_prompt="Not tee shirt, out of frame, lowres, text, error, cropped, worst quality, low quality, jpeg artifacts, ugly, out of frame, extra fingers, mutated hands, poorly drawn face, blurry, bad proportions, extra limbs, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck, username, watermark, signature" | |
def generate_image(prompt_SD:str): | |
print(prompt_SD) | |
payload = {"inputs": prompt_SD,"seed":random.randint(0,100),"negative_prompt":neg_prompt,"parameters": { | |
"width": 768, | |
"height": 768, | |
}} | |
headers = { | |
"Authorization": f"Bearer {HF_TOKEN}", | |
"Content-Type": "application/json", | |
"Accept": "image/png" # important to get an image back | |
} | |
response = requests.post(ENDPOINT_URL, headers=headers, json=payload) | |
#print(response.content) | |
img = Image.open(BytesIO(response.content)) | |
return img | |
def infer(prompt, | |
max_length = 250, | |
top_k = 0, | |
num_beams = 0, | |
no_repeat_ngram_size = 2, | |
top_p = 0.9, | |
seed=42, | |
temperature=0.7, | |
greedy_decoding = False, | |
return_full_text = False): | |
print('Empty input') | |
print(prompt) | |
top_k = None if top_k == 0 else top_k | |
do_sample = False if num_beams > 0 else not greedy_decoding | |
num_beams = None if (greedy_decoding or num_beams == 0) else num_beams | |
no_repeat_ngram_size = None if num_beams is None else no_repeat_ngram_size | |
top_p = None if num_beams else top_p | |
early_stopping = None if num_beams is None else num_beams > 0 | |
params = { | |
"max_new_tokens": max_length, | |
"top_k": top_k, | |
"top_p": top_p, | |
"temperature": temperature, | |
"do_sample": do_sample, | |
"seed": seed, | |
"early_stopping":early_stopping, | |
"no_repeat_ngram_size":no_repeat_ngram_size, | |
"num_beams":num_beams, | |
"return_full_text":return_full_text, | |
"raw_response":True | |
} | |
s = time.time() | |
response = inference(prompt, params=params) | |
print(response) | |
proc_time = time.time()-s | |
#print(f"Processing time was {proc_time} seconds") | |
return response | |
def getadline(text_inp): | |
print(text_inp) | |
print(datetime.today().strftime("%d-%m-%Y")) | |
text = prompt_text+"\nInput:"+text_inp + "\nOutput:" | |
resp = infer(text,seed=random.randint(0,100)) | |
generated_text=resp[0]['generated_text'] | |
result = generated_text.replace(text,'').strip() | |
result = result.replace("Output:","") | |
parts = result.split("###") | |
topic = parts[0].strip() | |
topic="\n".join(topic.split('\n')) | |
response_nsfw = requests.get('https://github.com/coffee-and-fun/google-profanity-words/raw/main/data/list.txt') | |
data_nsfw = response_nsfw.text | |
nsfwlist=data_nsfw.split('\n') | |
nsfwlowerlist=[] | |
for each in nsfwlist: | |
if each!='': | |
nsfwlowerlist.append(each.lower()) | |
nsfwlowerlist.extend(['bra','gay','lesbian',]) | |
print(topic) | |
mainstring=text_inp | |
foundnsfw=0 | |
for each_word in nsfwlowerlist: | |
raw_search_string = r"\b" + each_word + r"\b" | |
match_output = re.search(raw_search_string, mainstring) | |
no_match_was_found = ( match_output is None ) | |
if no_match_was_found: | |
foundnsfw=0 | |
else: | |
foundnsfw=1 | |
print(each_word) | |
break | |
if foundnsfw==1: | |
topic="Unsafe content found. Please try again with different prompts." | |
print(topic) | |
return(topic) | |
def getadvertisement(topic): | |
if topic!='': | |
input_keyword=topic | |
else: | |
input_keyword=getadline(random.choice('abcdefghijklmnopqrstuvwxyz')) | |
if 'Unsafe content found' in input_keyword: | |
input_keyword='Abstract art with a splash of colors' | |
print(input_keyword) | |
print(datetime.today().strftime("%d-%m-%Y")) | |
prompt_SD=input_keyword+','+prompt_image | |
# generate image | |
image = generate_image(prompt_SD) | |
# save to disk | |
image.save("finalimage.png") | |
image = generate_image(prompt_SD) | |
# save to disk | |
image.save("finalimage1.png") | |
return 'finalimage.png',"finalimage1.png" | |
with gr.Blocks() as demo: | |
gr.Markdown("<h1><center>T-Shirt Designs</center></h1>") | |
gr.Markdown( | |
"""Enter a prompt and get the t-shirt design. Use examples as a guide. We use an equally powerful AI model bigscience/bloom.""" | |
) | |
with gr.Row() as row: | |
with gr.Column(): | |
textbox = gr.Textbox(placeholder="Enter prompt (keep it crisp)...", lines=1,label='Your prompt (Optional)') | |
btn = gr.Button("Generate") | |
with gr.Column(): | |
output_image1 = gr.components.Image(label="Your tee shirt") | |
output_image2 = gr.components.Image(label="Your tee shirt") | |
btn.click(getadvertisement,inputs=[textbox], outputs=[output_image1,output_image2]) | |
examples = gr.Examples(examples=['anime art of man fighting','intricate skull concept art','heavy metal band album cover','abstract art of plants',], | |
inputs=[textbox]) | |
demo.launch() |