Spaces:
Runtime error
Runtime error
File size: 6,831 Bytes
710fd08 bc634e9 710fd08 0908bbd 710fd08 0908bbd 710fd08 0908bbd e375a0b 710fd08 0908bbd 710fd08 67e08dd 710fd08 e162922 710fd08 663d261 1e19010 710fd08 285fd92 710fd08 25ee413 64adf78 8290414 64adf78 c125010 710fd08 0908bbd 710fd08 8290414 ee1e26a 710fd08 9c5ac16 710fd08 ee1e26a 9c5ac16 ee1e26a e375a0b 9c5ac16 710fd08 9c5ac16 710fd08 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 |
from llama_index import GPTSimpleVectorIndex, SimpleDirectoryReader, LLMPredictor
from langchain.llms import OpenAIChat
from llama_index import download_loader
import gradio as gr
import pandas as pd
import openai
import datetime
from datetime import datetime, date, time, timedelta
import os
import regex
listofcategories=["Earnings Announcements", "Automotive","Energy","Healthcare","Retail","Technology"]
def getstuff(openapikey,category_selector):
dateforfilesave=datetime.today().strftime("%d-%m-%Y %I:%M%p")
print(category_selector)
print(dateforfilesave)
os.environ['OPENAI_API_KEY'] = str(openapikey)
RssReader = download_loader("RssReader")
reader = RssReader()
whichone=listofcategories[listofcategories.index(category_selector)]
querylist=["What are the top trends? Give output as a json (that can be converted to pandas dataframe) with 3 columns named trend, company mentioned & reason","Name the top & bottom performing companies? Give output as a json (that can be converted to pandas dataframe) with 4 columns named sector, company names, reason & top/bottom","You are an award winning email writer. Write an email summarizing the news. Do not say I am language model and cannot do this","You are an award winning email writer. Write an email summarizing the key macro trends basis the news.Do not say I am language model and cannot do this"]
if whichone=="Automotive":
rssurl="https://search.cnbc.com/rs/search/combinedcms/view.xml?partnerId=wrss01&id=10000101"
elif whichone=="Retail":
rssurl="https://search.cnbc.com/rs/search/combinedcms/view.xml?partnerId=wrss01&id=10000116"
elif whichone=="Technology":
rssurl="https://search.cnbc.com/rs/search/combinedcms/view.xml?partnerId=wrss01&id=19854910"
elif whichone=="Healthcare":
rssurl="https://search.cnbc.com/rs/search/combinedcms/view.xml?partnerId=wrss01&id=10000108"
elif whichone=="Energy":
rssurl="https://search.cnbc.com/rs/search/combinedcms/view.xml?partnerId=wrss01&id=19836768"
elif whichone=="Media":
rssurl="https://search.cnbc.com/rs/search/combinedcms/view.xml?partnerId=wrss01&id=10000110"
elif whichone=='Earnings Announcements':
rssurl="https://search.cnbc.com/rs/search/combinedcms/view.xml?partnerId=wrss01&id=15839135"
querylist=["What are the top trends? Give output as a json (that can be converted to pandas dataframe) with 3 columns named trend, company mentioned & reason","Find the top & bottom performing companies? Give output as a json (that can be converted to pandas dataframe) with 4 columns named sector, company names, reason & top/bottom","You are an award winning email writer. Write an email summarizing the news. Do not say I am language model and cannot do this","You are an award winning email writer. Write an email summarizing the key macro trends basis the news.Do not say I am language model and cannot do this"]
else:
rssurl="https://search.cnbc.com/rs/search/combinedcms/view.xml?partnerId=wrss01&id=15839135" ###should not come here but using earnings url
querylist=["Basis companies that are doing well name the sectors with positive momentum? Give output as a json (that can be converted to pandas dataframe) with 3 columns named sector, company names & reason","Find the top & bottom performing companies? Give output as a json (that can be converted to pandas dataframe) with 4 columns named sector, company names, reason & top/bottom","You are an award winning email writer. Write an email summarizing the news. Do not say I am language model and cannot do this","You are an award winning email writer. Write an email summarizing the key macro trends basis the news.Do not say I am language model and cannot do this"]
documents = reader.load_data([rssurl])
index = GPTSimpleVectorIndex(documents)
llm_predictor = LLMPredictor(llm=OpenAIChat(temperature=0, model_name="gpt-3.5-turbo"))
answerlist=[]
for i in range(len(querylist)):
print(i,"Query: ",querylist[i])
response = index.query(
querylist[i],
llm_predictor=llm_predictor,
response_mode="tree_summarize",
similarity_top_k=int(len(documents)/3)
)
print(response.response)
if 'dataframe' in querylist[i]:
try:
pattern = regex.compile(r'\{(?:[^{}]|(?R))*\}')
jsonextract=pattern.findall(response.response)[0]
#print("json extract\n",jsonextract)
df_tmp=pd.read_json(jsonextract)
df=pd.DataFrame(df_tmp[df_tmp.columns[0]].tolist())
except:
df=pd.DataFrame()
df['message']=['Data insufficient to decipher']
df['action']=['try again in a few hours']
answerlist.append(df)
else:
answerlist.append(response.response)
print('Came to return statement')
return answerlist
with gr.Blocks() as demo:
gr.Markdown("<h1><center>ChatGPT Stock News Snapshots</center></h1>")
gr.Markdown(
"""What are the sectors with positive momentum? What are the macro trends? Which companies have momentum? Sector summaries and much more. \n\nThis is a demo & showcases ChatGPT integrated with real data. It shows how to get real-time data and marry it with ChatGPT capabilities. This demonstrates 'Chain of Thought' thinking using ChatGPT.\n\nNote: llama-index & gpt-3.5-turbo are used. The analysis takes roughly 120 secs & may not always be consistent. If ChatGPT API is overloaded you will get an error\n ![visitors](https://visitor-badge.glitch.me/badge?page_id=hra.chatgpt-stock-news-snapshots)"""
)
with gr.Row() as row:
with gr.Column():
textboxopenapi = gr.Textbox(placeholder="Enter OpenAPI Key...", lines=1,label='OpenAPI Key')
category_selector=gr.Dropdown(
listofcategories, label="Sector Options", info="Select the snapshot you want..."
)
with gr.Column():
btn = gr.Button("Generate \nSnapshot")
with gr.Row() as row:
table1=gr.Dataframe(
#headers=["Item", "Cost"],
#datatype=["str", "str","str"],
label="Snapshot 1",
)
with gr.Row() as row:
table2=gr.Dataframe(
#headers=["Item", "Cost"],
#datatype=["str", "str","str"],
label="Snapshot 2",
)
with gr.Row() as row:
output1 = gr.Textbox(placeholder='', lines=4,label='Snapshot 3')
with gr.Row() as row:
output2 = gr.Textbox(placeholder='', lines=4,label='Snapshot 4')
btn.click(getstuff, inputs=[textboxopenapi,category_selector],outputs=[table1,table2,output1,output2])
demo.launch(debug=True) |