Spaces:
Runtime error
Runtime error
File size: 6,687 Bytes
107ff99 59f607f 107ff99 d53faba 099d7ee d53faba 75d2e7f 107ff99 f765f5b 107ff99 59f607f 107ff99 d53faba 107ff99 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 |
import gradio as gr
import openai
import requests
import json
import os
from duckduckgo_search import ddg
import datetime
from datetime import datetime, date, time, timedelta
def search_duckduckgo(query):
keywords = query
results = ddg(keywords, region='wt-wt', safesearch='Off', time='m')
filtered_results = [{"title": res["title"], "body": res["body"]} for res in results]
print(filtered_results)
return filtered_results
def get_search_query(task):
response = openai.ChatCompletion.create(
model="gpt-3.5-turbo",
messages=[
{"role": "user", "content": f"Given the task: {task}. Generate a concise search query with 1-3 keywords."}
]
)
search_query = response.choices[0]['message']['content'].strip()
print("Agent 2: ",search_query)
return search_query
def summarize_search_result(task, search_result):
response = openai.ChatCompletion.create(
model="gpt-3.5-turbo",
messages=[
{"role": "user", "content":f"Given the task '{task}' and the search result '{json.dumps(search_result)}', provide a summarized result."}
]
)
summary = response.choices[0]['message']['content'].strip()
return summary
def agent_1(objective):
response = openai.ChatCompletion.create(
model="gpt-3.5-turbo",
messages=[
{"role": "user", "content":f"Given the objective '{objective}', create a list of tasks that are closely related to the objective. If needed add specific key words from objective to the task sentence"}
]
)
tasks = response.choices[0]['message']['content'].strip().split('\n')
return tasks
def agent_2(task):
search_query = get_search_query(task)
print("Agent 2")
print(search_query)
search_results = search_duckduckgo(search_query)
summarized_result = summarize_search_result(task, search_results)
print(summarized_result)
return summarized_result
def agent_3(objective, last_result, tasks):
task_list = '\n'.join(tasks)
response = openai.ChatCompletion.create(
model="gpt-3.5-turbo",
messages=[
{"role": "user", "content":f"Given the objective '{objective}', the last result '{json.dumps(last_result)}', and the task list:\n{task_list}\n\nRank the tasks based on their relevance to the objective."}
]
)
modified_tasks = response.choices[0]['message']['content'].strip().split('\n')
print("Agent 3")
print(modified_tasks)
return modified_tasks
def summarize_result(objective, result):
response = openai.ChatCompletion.create(
model="gpt-3.5-turbo",
messages=[
{"role": "user", "content":f"Given the objective '{objective}' and the final result '{json.dumps(result)}', provide a summary."}
]
)
summary = response.choices[0]['message']['content'].strip()
return summary
def generate_final_answer(objective, all_results):
response = openai.ChatCompletion.create(
model="gpt-3.5-turbo",
messages=[
{"role": "user", "content":f"Given the objective '{objective}' and the collected results '{json.dumps(all_results)}', provide a final answer addressing the objective."}
]
)
final_answer = response.choices[0]['message']['content'].strip()
return final_answer
def main(objective, loop_count):
tasks = agent_1(objective)
all_results = []
completed_tasks = []
for i in range(loop_count):
print(i+1)
if i < len(tasks):
print('NEXT TASK: ',tasks[i])
completed_tasks.append(tasks[i])
result = agent_2(tasks[i])
all_results.append(result)
tasks = agent_3(objective, result, tasks)
print('*********************')
else:
break
final_answer = generate_final_answer(objective, all_results)
return final_answer,completed_tasks,tasks
def getbabyagianswer(objective,loop_count,openapikey):
dateforfilesave=datetime.today().strftime("%d-%m-%Y %I:%M%p")
print(objective)
print(dateforfilesave)
if openapikey=='':
return ["Please provide OpenAPI Key","Please provide OpenAPI Key","Please provide OpenAPI Key"]
os.environ['OPENAI_API_KEY'] = str(openapikey)
openai.api_key=str(openapikey)
final_summary,completed_tasts,all_tasks = main(objective, int(loop_count))
print("Final Summary:", final_summary)
return final_summary,completed_tasts,all_tasks
with gr.Blocks() as demo:
gr.Markdown("<h1><center>GPT4 created BabyAGI</center></h1>")
gr.Markdown(
""" This is part of a series of experiments using BabyAGI as a "framework" to construct focused use cases (ex: idea generation). In this GPT-4 was prompted to create a BabyAGI with task creation & execution agents but with constraints to give answer with a specified number of loops. Unlike the original BabyAGI concept, this is not open-ended. \n\nNote: This is a series of experiments to understand AI agents and hence do check the quality of output. OpenAI agents (gpt-3.5-turbo) & DuckDuckGo search are used. The analysis takes roughly 120 secs & may not always be consistent. An error occurs when the OpenAI Api key is not provided/ ChatGPT API is overloaded/ ChatGPT is unable to correctly decipher & format the output\n\n"""
)
with gr.Row() as row:
with gr.Column():
textboxtopic = gr.Textbox(placeholder="Enter Objective/ Goal...", lines=1,label='Objective')
with gr.Column():
textboxloopcount = gr.Textbox(placeholder="Enter # of loops...", lines=1,label='Loop Count')
with gr.Column():
textboxopenapi = gr.Textbox(placeholder="Enter OpenAPI Key...", lines=1,label='OpenAPI Key')
with gr.Row() as row:
examples = gr.Examples(examples=['Give me a startup idea in healthcare technology for India','Which is a must see destination in Mysore?','Find me a unique cuisine restaurant in bangalore','Give me a startup idea for AI in music streaming'],
inputs=[textboxtopic])
with gr.Row() as row:
btn = gr.Button("Unleash AI Agent")
with gr.Row() as row:
with gr.Column():
answer1 = gr.Textbox(placeholder="", lines=1,label='Answer')
with gr.Column():
fulltasklist1 = gr.Textbox(placeholder="", lines=1,label='Full Task List')
with gr.Column():
completedtasklist1 = gr.Textbox(placeholder="", lines=1,label='Completed Tasks')
btn.click(getbabyagianswer, inputs=[textboxtopic,textboxloopcount,textboxopenapi,],outputs=[answer1,fulltasklist1,completedtasklist1])
demo.launch(debug=True) |