import json import openai import os import pandas as pd import os from collections import deque from typing import Dict, List, Optional, Any from langchain import LLMChain, OpenAI, PromptTemplate from langchain.embeddings import OpenAIEmbeddings from langchain.llms import BaseLLM from langchain.vectorstores.base import VectorStore from pydantic import BaseModel, Field from langchain.chains.base import Chain from langchain.agents import ZeroShotAgent, Tool, AgentExecutor from langchain import OpenAI, LLMChain from langchain.chat_models import ChatOpenAI import datetime from datetime import datetime, date, time, timedelta from llama_index import GPTSimpleVectorIndex, SimpleDirectoryReader, LLMPredictor, Document, ServiceContext from langchain.llms import OpenAIChat import feedparser import pandas as pd import numpy as np from duckduckgo_search import ddg_videos from duckduckgo_search import ddg def get_learning_curriculum(openapikey,topic): dateforfilesave=datetime.today().strftime("%d-%m-%Y %I:%M%p") print(topic) print(dateforfilesave) if openapikey=='': return pd.DataFrame(["Please provide OpenAPI Key"],columns=['ERROR']) os.environ['OPENAI_API_KEY'] = str(openapikey) prompt='You are a training center AI. Give me a detailed curriculum to learn about "{topicforquery}" using search. The curriculum will be a series of learning tasks to be achieved. Give output as a python list of jsons with "task name", "search keyword" to search to complete the task. Donot repeat the taks. For each task name also add a list of "questions" to ask the search results data to select specific articles and complete the curriculum. Remember the search list will be a dataframe of titles & body of the searched article and you may not be able to go through the full article hence these questions should be of types "Which article best suits a learning curriculum?", "Which article is learning oriented?. To reiterate output should be in json with keys task name ex: get beginner training articles for painting, search keyword ex: beginner painting & questions ex: What are top articles for painting?'.format(topicforquery=topic) openai.api_key = os.getenv("OPENAI_API_KEY") resp=openai.ChatCompletion.create( model="gpt-3.5-turbo", messages=[ {"role": "user", "content": prompt} ] ) tasklist=json.loads(resp['choices'][0]['message']['content']) llm = ChatOpenAI(temperature=0) def research_search(search_keyword,question_to_ask,topic): llm_predictor = LLMPredictor(llm=OpenAIChat(temperature=0, model_name="gpt-3.5-turbo")) service_context = ServiceContext.from_defaults(llm_predictor=llm_predictor) keyword=search_keyword keyword="+".join(keyword.lower().split()) keyword=keyword.replace(' and ',' AND ') posts = ddg(keyword+' '+topic, safesearch='Off', page=1) latestnews_df=pd.DataFrame(posts) print(latestnews_df.columns) #latestnews_df=latestnews_df.drop_duplicates(subset=['title','link','published']) latestnews_df['text']='Title: '+latestnews_df['title']+' Description: '+latestnews_df['body'] print(latestnews_df['text'].tolist()) documents=[Document(t) for t in latestnews_df['text'].tolist()] index = GPTSimpleVectorIndex.from_documents(documents) prompt_query=question_to_ask respstr=str(index.query(prompt_query, service_context=service_context, response_mode="tree_summarize", similarity_top_k=10)) print("Search response: ",respstr) return respstr finallist=[] list1=[] list2=[] list3=[] for i in range(len(tasklist)): taskstuff=tasklist[i] search_keyword=taskstuff['search keyword'] print('Task Name: '+taskstuff['task name']) finallist.append('Task Name: '+taskstuff['task name']) for question in taskstuff['questions']: response_string=research_search(search_keyword,question,topic) finallist.append(" Question: "+question) finallist.append(" "+response_string) list1.append(taskstuff['task name']) list2.append(question) list3.append(response_string) outputdf=pd.DataFrame() outputdf['Task']=list1 outputdf['Question']=list2 outputdf['Learning']=list3 return outputdf with gr.Blocks() as demo: gr.Markdown("

BabyAGI creates Learning Curriculum

") gr.Markdown( """What are the sectors with positive momentum? What are the macro trends? Which companies have momentum? Sector summaries and much more. \n\nThis is a demo & showcases ChatGPT integrated with real data. It shows how to get real-time data and marry it with ChatGPT capabilities. This demonstrates 'Chain of Thought' thinking using ChatGPT.\n\n4 snapshots are provided for illustration (trends, sector outlook, news summary email, macro trends email)\n\nNote: llama-index & gpt-3.5-turbo are used. The analysis takes roughly 120 secs & may not always be consistent. If ChatGPT API is overloaded you will get an error\n ![visitors](https://visitor-badge.glitch.me/badge?page_id=hra.chatgpt-stock-news-snapshots)""" ) with gr.Row() as row: with gr.Column(): textboxtopic = gr.Textbox(placeholder="Enter Topic for Curriculum...", lines=1,label='Topic') with gr.Column(): textboxopenapi = gr.Textbox(placeholder="Enter OpenAPI Key...", lines=1,label='OpenAPI Key') with gr.Row() as row: btn = gr.Button("Generate \nCurriculum") with gr.Row() as row: table1=gr.Dataframe( #headers=["Item", "Cost"], #datatype=["str", "str","str"], label="Learning Curriculum", ) btn.click(getstuff, inputs=[textboxopenapi,textboxtopic],outputs=[table1]) demo.launch(debug=True)