File size: 8,420 Bytes
db1003c
 
 
 
 
 
 
 
 
 
 
34d89c7
a5a25a9
 
db1003c
 
 
 
 
 
 
 
 
 
 
a0a3021
db1003c
 
a0a3021
db1003c
 
e837bca
db1003c
 
 
 
 
 
 
e837bca
 
db1003c
 
 
a0a3021
db1003c
 
 
 
76d488b
db1003c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6b6f1c9
db1003c
6b6f1c9
db1003c
 
 
 
 
 
 
 
 
76d488b
db1003c
 
 
 
6b6f1c9
a0a3021
 
 
 
db1003c
 
 
 
 
 
 
 
 
 
 
76d488b
db1003c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e837bca
db1003c
 
 
 
 
 
 
8989162
db1003c
 
 
 
 
 
 
 
 
a0a3021
db1003c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6b6f1c9
 
 
 
 
 
a0a3021
db1003c
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
from llama_index  import GPTSimpleVectorIndex, SimpleDirectoryReader, LLMPredictor, Document,ServiceContext
from langchain.llms import OpenAIChat
from llama_index import download_loader
from langchain.chains import LLMChain, TransformChain, SimpleSequentialChain
from langchain.prompts import PromptTemplate
from langchain.agents import initialize_agent, Tool,load_tools
from langchain.chat_models import ChatOpenAI

import gradio as gr
import pandas as pd
import openai
import re
from bs4 import BeautifulSoup
import pandas as pd
import datetime
from datetime import datetime, date, time, timedelta
import os
import regex
import requests
import json
from sec_edgar_downloader._utils import get_filing_urls_to_download

listofcategories=["10-K", "10-Q","8-K"]


def getstuff(openapikey,category_selector,ticker_input,user_question):
    dateforfilesave=datetime.today().strftime("%d-%m-%Y %I:%M%p")
    print(ticker_input)
    print(user_question)
    print(dateforfilesave)
    if openapikey=='':
        return ["Please provide OpenAPI Key","Please provide OpenAPI Key","Please provide OpenAPI Key","Please provide OpenAPI Key","Please provide OpenAPI Key","Please provide OpenAPI Key","Please provide OpenAPI Key",]
    
    os.environ['OPENAI_API_KEY'] = str(openapikey)

    if category_selector=='10-K':
        num_filings_needed=1
    elif category_selector=='8-K':
        num_filings_needed=4
    elif category_selector=='10-Q':
        num_filings_needed=2
    else:
        num_filings_needed=1
    filings_temp=get_filing_urls_to_download(category_selector, ticker_input,num_filings_to_download=num_filings_needed,include_amends=False,before_date='2023-04-01',after_date='2022-01-01')
    files=[filings_temp[i].full_submission_url for i in range(len(filings_temp))]
    print('Came here1')
    filetextcontentlist=[]
    for each in files:
      headers = {
                    "User-Agent": '[email protected]',
                    "Accept-Encoding": "gzip, deflate",
                    "Host": "www.sec.gov",
                }
      resp=requests.get(each,headers=headers)
      raw_10k  = resp.text
      print('Came here2')
      # Regex to find <DOCUMENT> tags
      doc_start_pattern = re.compile(r'<DOCUMENT>')
      doc_end_pattern = re.compile(r'</DOCUMENT>')
      # Regex to find <TYPE> tag prceeding any characters, terminating at new line
      type_pattern = re.compile(r'<TYPE>[^\n]+')
    
      # Create 3 lists with the span idices for each regex
    
      ### There are many <Document> Tags in this text file, each as specific exhibit like 10-K, EX-10.17 etc
      ### First filter will give us document tag start <end> and document tag end's <start> 
      ### We will use this to later grab content in between these tags
      doc_start_is = [x.end() for x in doc_start_pattern.finditer(raw_10k)]
      doc_end_is = [x.start() for x in doc_end_pattern.finditer(raw_10k)]
    
      ### Type filter is interesting, it looks for <TYPE> with Not flag as new line, ie terminare there, with + sign
      ### to look for any char afterwards until new line \n. This will give us <TYPE> followed Section Name like '10-K'
      ### Once we have have this, it returns String Array, below line will with find content after <TYPE> ie, '10-K' 
      ### as section names
      doc_types = [x[len('<TYPE>'):] for x in type_pattern.findall(raw_10k)]
    
      document = {}
    
      # Create a loop to go through each section type and save only the 10-K section in the dictionary
      for doc_type, doc_start, doc_end in zip(doc_types, doc_start_is, doc_end_is):
          if doc_type == category_selector:
              document[doc_type] = raw_10k[doc_start:doc_end]
      item_content = BeautifulSoup(document[category_selector], 'lxml')
    
      filetextcontentlist.append(str(item_content.text.encode('ascii','ignore')))

    print('Came here3')
    temp=". ".join(filetextcontentlist).replace('\xa024',' ')
    temp=temp.replace('\n',' ').strip()
    temp=temp.split('.')
    newlist=[]
    for each in temp:
      if len(each.split())>10: ###eliminate sentences with less words
        newlist.append(each)
    documents=[Document(t) for t in newlist]
    index = GPTSimpleVectorIndex.from_documents(documents)
    print('Came here4')
    querylist=['What are the main products/ services mentioned?','What are the major risks?',"What are the top investment focus areas?","What is the financial outlook of the company?","What key technologies like AI, blockchain etc are mentioned?","What other company names/ competitors are mentioned?"]
    if user_question=='':
        querylist.append('What is the key summary?')
    else:
        querylist.append(user_question)
    
    
    llm = ChatOpenAI(temperature=0)
    llm_predictor = LLMPredictor(llm=OpenAIChat(temperature=0, model_name="gpt-3.5-turbo"))
    service_context = ServiceContext.from_defaults(llm_predictor=llm_predictor)
    
    answerlist=[]
    for i in range(len(querylist)):
        print(i,"Query: ",querylist[i])
        response = index.query(
        querylist[i], 
        service_context=service_context,
        response_mode="tree_summarize",
        similarity_top_k=min(int(len(documents)/3),20)
        )
        print(response.response)
        if 'dataframe' in querylist[i]:
            try:
                pattern = regex.compile(r'\{(?:[^{}]|(?R))*\}')
                jsonextract=pattern.findall(response.response)[0]
                #print("json extract\n",jsonextract)
                df_tmp=pd.read_json(jsonextract)
                if len(df_tmp.columns)<=1:
                    df=pd.DataFrame(df_tmp[df_tmp.columns[0]].tolist())
                else:
                    df=df_tmp
            except:
                df=pd.DataFrame()
                df['message']=['Data insufficient to decipher']
                df['action']=['try again in a few hours']
            answerlist.append(df)
        else:
            answerlist.append(querylist[i]+'\n\n'+response.response)

    print('Came to return statement')
    return answerlist

with gr.Blocks() as demo:
    gr.Markdown("<h1><center>ChatGPT SEC Filings Question Answers</center></h1>")
    gr.Markdown(
        """What are the products & services? What are the risks? What is the outlook? and much more. \n\nThis is a demo & showcases ChatGPT integrated with real data. It shows how to get real-time data and marry it with ChatGPT capabilities.\n\nMultiple snapshots/ Question-Answers are provided for illustration (products, risks, focus areas, etc). The latest one 10-K/ two 10-Q/  four 8-K filings are pulled\n\nNote: llama-index & gpt-3.5-turbo are used. The analysis takes more than 1-3 mins & may not always be consistent. If ChatGPT API is overloaded/ no API key is provided/ API quota is over you will get an error\n ![visitors](https://visitor-badge.glitch.me/badge?page_id=hra.ChatGPT-SEC-Docs-QA)"""
        )
    
    with gr.Row() as row:
        with gr.Column():
            category_selector=gr.Dropdown(
                listofcategories, label="Filing Categories", info="Select the filing you want..."
                )
            input1 = gr.Textbox(placeholder='Enter ticker (USA only)', lines=1,label='Ticker')
        with gr.Column():
            input2 = gr.Textbox(placeholder='Enter your question', lines=1,label='User Question')
            textboxopenapi = gr.Textbox(placeholder="Enter OpenAPI Key...", lines=1,label='OpenAPI Key')
        
    with gr.Column():
        btn = gr.Button("Generate \nAnswers")
        
    with gr.Row() as row:
        with gr.Column():
            output1 = gr.Textbox(placeholder='', lines=4,label='Snapshot 1')
        with gr.Column():
            output2 = gr.Textbox(placeholder='', lines=4,label='Snapshot 2')
    with gr.Row() as row:
        with gr.Column():
            output3 = gr.Textbox(placeholder='', lines=4,label='Snapshot 3')
        with gr.Column():
            output4 = gr.Textbox(placeholder='', lines=4,label='Snapshot 4')
    with gr.Row() as row:
        with gr.Column():
            output5 = gr.Textbox(placeholder='', lines=4,label='Snapshot 5')
        with gr.Column():
            output6 = gr.Textbox(placeholder='', lines=4,label='Snapshot 6')
            
    btn.click(getstuff, inputs=[textboxopenapi,category_selector,input1,input2],outputs=[output1,output2,output3,output4,output5,output6,input2])
    
    
demo.launch(debug=True)