import gradio as gr import torch import numpy as np from PIL import Image import random from diffusers import DiffusionPipeline pipeline = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0") pipeline.load_lora_weights("ostris/super-cereal-sdxl-lora") pipeline.to("cuda:0") MAX_SEED = np.iinfo(np.int32).max def text_to_image(prompt): seed = random.randint(0, MAX_SEED) negative_prompt = "ugly, blurry, nsfw, gore, blood" output = pipeline(prompt=prompt, negative_prompt=negative_prompt, width=1024, height=1024, guidance_scale=7.0, num_inference_steps=25, generator=torch.Generator().manual_seed(seed)) generated_img = output.images[0] generated_img_array = np.array(generated_img) return generated_img_array def create_cereal_box(input_image): cover_img = Image.fromarray(input_image.astype('uint8'), 'RGB') template_img = Image.open("template.jpeg") scaling_factor = 1.5 rect_height = int(template_img.height * 0.32) new_width = int(rect_height * 0.70) cover_resized = cover_img.resize((new_width, rect_height), Image.LANCZOS) new_width_scaled = int(new_width * scaling_factor) new_height_scaled = int(rect_height * scaling_factor) cover_resized_scaled = cover_resized.resize((new_width_scaled, new_height_scaled), Image.LANCZOS) left_x = int(template_img.width * 0.085) left_y = int((template_img.height - new_height_scaled) // 2 + template_img.height * 0.012) left_position = (left_x, left_y) right_x = int(template_img.width * 0.82) - new_width_scaled right_y = left_y right_position = (right_x, right_y) template_copy = template_img.copy() template_copy.paste(cover_resized_scaled, left_position) template_copy.paste(cover_resized_scaled, right_position) template_copy_array = np.array(template_copy) return template_copy_array def combined_function(prompt): generated_img_array = text_to_image(prompt) final_img = create_cereal_box(generated_img_array) return final_img with gr.Blocks() as app: gr.HTML("
This application uses StableDiffusion XL to create any cereal box you could ever imagine!