Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -5,19 +5,23 @@ from PIL import Image
|
|
5 |
import random
|
6 |
from diffusers import DiffusionPipeline
|
7 |
|
8 |
-
# Initialize DiffusionPipeline with LoRA weights
|
9 |
pipeline = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0")
|
10 |
pipeline.load_lora_weights("ostris/super-cereal-sdxl-lora")
|
|
|
|
|
|
|
11 |
|
12 |
def text_to_image(prompt):
|
13 |
-
|
14 |
-
|
|
|
|
|
|
|
|
|
15 |
|
16 |
def create_cereal_box(input_image):
|
17 |
-
cover_img = input_image
|
18 |
-
template_img = Image.open('
|
19 |
-
|
20 |
-
# Cereal box creation logic
|
21 |
scaling_factor = 1.5
|
22 |
rect_height = int(template_img.height * 0.32)
|
23 |
new_width = int(rect_height * 0.70)
|
@@ -34,15 +38,32 @@ def create_cereal_box(input_image):
|
|
34 |
template_copy = template_img.copy()
|
35 |
template_copy.paste(cover_resized_scaled, left_position)
|
36 |
template_copy.paste(cover_resized_scaled, right_position)
|
37 |
-
|
38 |
-
# Convert to a numpy array for Gradio output
|
39 |
template_copy_array = np.array(template_copy)
|
40 |
return template_copy_array
|
41 |
|
42 |
def combined_function(prompt):
|
43 |
-
|
44 |
-
final_img = create_cereal_box(
|
45 |
return final_img
|
46 |
|
47 |
-
|
48 |
-
gr.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
import random
|
6 |
from diffusers import DiffusionPipeline
|
7 |
|
|
|
8 |
pipeline = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0")
|
9 |
pipeline.load_lora_weights("ostris/super-cereal-sdxl-lora")
|
10 |
+
pipeline.to("cuda:0")
|
11 |
+
|
12 |
+
MAX_SEED = np.iinfo(np.int32).max
|
13 |
|
14 |
def text_to_image(prompt):
|
15 |
+
seed = random.randint(0, MAX_SEED)
|
16 |
+
negative_prompt = "ugly, blurry, nsfw, gore, blood"
|
17 |
+
output = pipeline(prompt=prompt, negative_prompt=negative_prompt, width=1024, height=1024, guidance_scale=7.0, num_inference_steps=25, generator=torch.Generator().manual_seed(seed))
|
18 |
+
generated_img = output.images[0]
|
19 |
+
generated_img_array = np.array(generated_img)
|
20 |
+
return generated_img_array
|
21 |
|
22 |
def create_cereal_box(input_image):
|
23 |
+
cover_img = Image.fromarray(input_image.astype('uint8'), 'RGB')
|
24 |
+
template_img = Image.open('/content/866b9b8f50b50879120be0b87dfd6050.jpg')
|
|
|
|
|
25 |
scaling_factor = 1.5
|
26 |
rect_height = int(template_img.height * 0.32)
|
27 |
new_width = int(rect_height * 0.70)
|
|
|
38 |
template_copy = template_img.copy()
|
39 |
template_copy.paste(cover_resized_scaled, left_position)
|
40 |
template_copy.paste(cover_resized_scaled, right_position)
|
|
|
|
|
41 |
template_copy_array = np.array(template_copy)
|
42 |
return template_copy_array
|
43 |
|
44 |
def combined_function(prompt):
|
45 |
+
generated_img_array = text_to_image(prompt)
|
46 |
+
final_img = create_cereal_box(generated_img_array)
|
47 |
return final_img
|
48 |
|
49 |
+
with gr.Blocks() as app:
|
50 |
+
gr.HTML("<div style='text-align: center;'><h1>Cereal Box Maker π₯£</h1></div>")
|
51 |
+
gr.HTML("<div style='text-align: center;'><p>This application uses StableDiffusion XL to create any cereal box you could ever imagine!</p></div>")
|
52 |
+
gr.HTML("<div style='text-align: center;'><h3>Instructions:</h3><ol><li>Describe the cereal box you want to create and hit generate!</li><li>Print it out, cut the outside, fold the lines, and then tape!</li></ol></div>")
|
53 |
+
gr.HTML("<div style='text-align: center;'><p>A space by AP π§, follow me on <a href='https://twitter.com/angrypenguinPNG'>Twitter</a>! H/T to OstrisAI <a href='https://twitter.com/ostrisai'>Twitter</a> for their Cereal Box LoRA!</p></div>")
|
54 |
+
|
55 |
+
with gr.Row():
|
56 |
+
textbox = gr.Textbox(label="Describe your cereal box: Ex: 'Avengers Cereal'")
|
57 |
+
btn_generate = gr.Button("Generate", label="Generate")
|
58 |
+
|
59 |
+
with gr.Row():
|
60 |
+
output_img = gr.Image(label="Your Custom Cereal Box")
|
61 |
+
|
62 |
+
btn_generate.click(
|
63 |
+
combined_function,
|
64 |
+
inputs=[textbox],
|
65 |
+
outputs=[output_img]
|
66 |
+
)
|
67 |
+
|
68 |
+
app.queue(concurrency_count=4, max_size=20, api_open=False)
|
69 |
+
app.launch(debug=True)
|