Spaces:
Runtime error
Runtime error
import gradio as gr | |
import torch | |
import numpy as np | |
from PIL import Image | |
from diffusers import DiffusionPipeline | |
# Initialize the DiffusionPipeline model with LoRA weights | |
pipeline = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0") | |
pipeline.load_lora_weights("ostris/super-cereal-sdxl-lora") | |
def text_to_image(prompt): | |
# Generate image using the DiffusionPipeline | |
output = pipeline(prompt) | |
generated_img_tensor = output.images[0] | |
# Convert torch tensor to numpy array | |
generated_img_array = generated_img_tensor.cpu().numpy().transpose((1, 2, 0)) | |
return generated_img_array | |
def create_cereal_box(input_image): | |
# Convert the input numpy array to PIL Image | |
cover_img = Image.fromarray((input_image.astype(np.uint8))) | |
# Load the template image | |
template_img = Image.open('CerealBoxMaker/template.jpeg') | |
# Simplified cereal box creation logic | |
scaling_factor = 1.5 | |
rect_height = int(template_img.height * 0.32) | |
new_width = int(rect_height * 0.70) | |
cover_resized = cover_img.resize((new_width, rect_height), Image.LANCZOS) | |
new_width_scaled = int(new_width * scaling_factor) | |
new_height_scaled = int(rect_height * scaling_factor) | |
cover_resized_scaled = cover_resized.resize((new_width_scaled, new_height_scaled), Image.LANCZOS) | |
left_x = int(template_img.width * 0.085) | |
left_y = int((template_img.height - new_height_scaled) // 2 + template_img.height * 0.012) | |
left_position = (left_x, left_y) | |
right_x = int(template_img.width * 0.82) - new_width_scaled | |
right_y = left_y | |
right_position = (right_x, right_y) | |
template_copy = template_img.copy() | |
template_copy.paste(cover_resized_scaled, left_position) | |
template_copy.paste(cover_resized_scaled, right_position) | |
# Convert the PIL Image back to a numpy array | |
template_copy_array = np.array(template_copy) | |
return template_copy_array | |
def combined_function(prompt): | |
generated_img_array = text_to_image(prompt) | |
final_img = create_cereal_box(generated_img_array) | |
return final_img | |
# Create a Gradio Interface | |
gr.Interface(fn=combined_function, inputs="text", outputs="image").launch() |