File size: 3,691 Bytes
453ed2e
 
 
 
 
a29e3ba
453ed2e
 
d58d62b
 
453ed2e
 
a29e3ba
 
 
 
01e1199
453ed2e
 
 
 
 
a29e3ba
453ed2e
 
 
 
 
a29e3ba
453ed2e
811e3ea
453ed2e
 
01e1199
 
 
453ed2e
 
 
 
 
 
a29e3ba
 
 
 
04cb33c
a29e3ba
453ed2e
a29e3ba
 
453ed2e
 
04cb33c
5921c24
15643d7
 
453ed2e
15643d7
a02d083
453ed2e
0277b1d
453ed2e
 
 
 
6ec4b8d
a02d083
6ec4b8d
453ed2e
 
 
 
 
a02d083
0277b1d
453ed2e
 
 
 
 
 
 
 
 
 
 
 
 
5921c24
453ed2e
 
 
 
 
 
04cb33c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
import torch
import os
import gradio as gr
from PIL import Image
from diffusers import (
    DiffusionPipeline,
    StableDiffusionControlNetImg2ImgPipeline,
    ControlNetModel,
    DPMSolverMultistepScheduler,  # <-- Added import
    EulerDiscreteScheduler  # <-- Added import
)

# Initialize both pipelines
init_pipe = DiffusionPipeline.from_pretrained("SG161222/Realistic_Vision_V2.0", torch_dtype=torch.float16).to("cuda")
controlnet = ControlNetModel.from_pretrained("monster-labs/control_v1p_sd15_qrcode_monster", torch_dtype=torch.float16)
main_pipe = StableDiffusionControlNetImg2ImgPipeline.from_pretrained(
    "SG161222/Realistic_Vision_V2.0",
    controlnet=controlnet,
    safety_checker=None,
    torch_dtype=torch.float16,
).to("cuda")

# Sampler map
SAMPLER_MAP = {
    "DPM++ Karras SDE": lambda config: DPMSolverMultistepScheduler.from_config(config, use_karras=True, algorithm_type="sde-dpmsolver++"),
    "Euler": lambda config: EulerDiscreteScheduler.from_config(config),
}

# Inference function
def inference(
    control_image: Image.Image,
    prompt: str,
    negative_prompt: str,
    guidance_scale: float = 8.0,
    controlnet_conditioning_scale: float = 1,
    strength: float = 0.9,
    seed: int = -1,
    sampler = "DPM++ Karras SDE",
):
    if prompt is None or prompt == "":
        raise gr.Error("Prompt is required")
    
    # Generate the initial image
    init_image = init_pipe(prompt).images[0]

    # Rest of your existing code
    control_image = control_image.resize((512, 512))
    main_pipe.scheduler = SAMPLER_MAP[sampler](main_pipe.scheduler.config)
    generator = torch.manual_seed(seed) if seed != -1 else torch.Generator()

    out = main_pipe(
        prompt=prompt,
        negative_prompt=negative_prompt,
        image=init_image,
        control_image=control_image,
        guidance_scale=guidance_scale,
        controlnet_conditioning_scale=controlnet_conditioning_scale,
        generator=generator,
        strength=strength,
        num_inference_steps=30,
    )
    return out.images[0]

with gr.Blocks() as app:
    gr.Markdown(
        '''
        # Illusion Diffusion πŸŒ€
        ## Generate stunning illusion artwork with Stable Diffusion
        **[Follow me on Twitter](https://twitter.com/angrypenguinPNG)**
        '''
    )
    
    with gr.Row():
        with gr.Column():
            control_image = gr.Image(label="Input Illusion", type="pil")
            prompt = gr.Textbox(label="Prompt")
            negative_prompt = gr.Textbox(label="Negative Prompt", value="ugly, disfigured, low quality, blurry, nsfw")
            with gr.Accordion(label="Advanced Options", open=False):
                controlnet_conditioning_scale = gr.Slider(minimum=0.0, maximum=5.0, step=0.01, value=1.1, label="Controlnet Conditioning Scale")
                strength = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, value=0.9, label="Strength")
                guidance_scale = gr.Slider(minimum=0.0, maximum=50.0, step=0.25, value=7.5, label="Guidance Scale")
                sampler = gr.Dropdown(choices=list(SAMPLER_MAP.keys()), value="DPM++ Karras SDE")
                seed = gr.Slider(minimum=-1, maximum=9999999999, step=1, value=2313123, label="Seed", randomize=True)
            run_btn = gr.Button("Run")
        with gr.Column():
            result_image = gr.Image(label="Illusion Diffusion Output")
            
    run_btn.click(
        inference,
        inputs=[control_image, prompt, negative_prompt, guidance_scale, controlnet_conditioning_scale, strength, seed, sampler],
        outputs=[result_image]
    )

app.queue(concurrency_count=4, max_size=20)

if __name__ == "__main__":
    app.launch(debug=True)