Spaces:
Runtime error
Runtime error
File size: 3,462 Bytes
453ed2e fb15d47 453ed2e 01e1199 453ed2e 811e3ea 453ed2e 01e1199 453ed2e 5921c24 0277b1d 453ed2e 5921c24 15643d7 453ed2e 15643d7 a02d083 453ed2e 0277b1d 453ed2e 6ec4b8d a02d083 6ec4b8d 453ed2e a02d083 0277b1d 453ed2e 5921c24 453ed2e 0277b1d a02d083 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 |
import torch
import os
import gradio as gr
from PIL import Image
from diffusers import (
StableDiffusionPipeline,
StableDiffusionControlNetImg2ImgPipeline,
ControlNetModel,
DDIMScheduler,
DPMSolverMultistepScheduler,
DEISMultistepScheduler,
HeunDiscreteScheduler,
EulerDiscreteScheduler,
)
controlnet = ControlNetModel.from_pretrained(
"monster-labs/control_v1p_sd15_qrcode_monster", torch_dtype=torch.float16
)
pipe = StableDiffusionControlNetImg2ImgPipeline.from_pretrained(
"SG161222/Realistic_Vision_V2.0",
controlnet=controlnet,
safety_checker=None,
torch_dtype=torch.float16,
).to("cuda")
pipe.enable_xformers_memory_efficient_attention()
SAMPLER_MAP = {
"DPM++ Karras SDE": lambda config: DPMSolverMultistepScheduler.from_config(config, use_karras=True, algorithm_type="sde-dpmsolver++"),
"Euler": lambda config: EulerDiscreteScheduler.from_config(config),
}
def inference(
control_image: Image.Image,
prompt: str,
negative_prompt: str,
guidance_scale: float = 8.0,
controlnet_conditioning_scale: float = 1,
strength: float = 0.9,
seed: int = -1,
sampler = "DPM++ Karras SDE",
):
if prompt is None or prompt == "":
raise gr.Error("Prompt is required")
control_image = control_image.resize((512, 512))
pipe.scheduler = SAMPLER_MAP[sampler](pipe.scheduler.config)
generator = torch.manual_seed(seed) if seed != -1 else torch.Generator()
out = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
control_image=control_image,
guidance_scale=guidance_scale,
controlnet_conditioning_scale=controlnet_conditioning_scale,
generator=generator,
strength=strength,
num_inference_steps=30,
)
return out.images[0]
with gr.Blocks() as app:
gr.Markdown(
'''
# Illusion Diffusion π
## Generate stunning illusion artwork with Stable Diffusion
**[Follow me on Twitter](https://twitter.com/angrypenguinPNG)**
'''
)
with gr.Row():
with gr.Column():
control_image = gr.Image(label="Input Illusion", type="pil")
prompt = gr.Textbox(label="Prompt")
negative_prompt = gr.Textbox(label="Negative Prompt", value="ugly, disfigured, low quality, blurry, nsfw")
with gr.Accordion(label="Advanced Options", open=False):
controlnet_conditioning_scale = gr.Slider(minimum=0.0, maximum=5.0, step=0.01, value=1.1, label="Controlnet Conditioning Scale")
strength = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, value=0.9, label="Strength")
guidance_scale = gr.Slider(minimum=0.0, maximum=50.0, step=0.25, value=7.5, label="Guidance Scale")
sampler = gr.Dropdown(choices=list(SAMPLER_MAP.keys()), value="DPM++ Karras SDE")
seed = gr.Slider(minimum=-1, maximum=9999999999, step=1, value=2313123, label="Seed", randomize=True)
run_btn = gr.Button("Run")
with gr.Column():
result_image = gr.Image(label="Illusion Diffusion Output")
run_btn.click(
inference,
inputs=[control_image, prompt, negative_prompt, guidance_scale, controlnet_conditioning_scale, strength, seed, sampler],
outputs=[result_image]
)
app.queue(concurrency_count=4, max_size=20)
if __name__ == "__main__":
app.launch(debug=True)
|