File size: 3,700 Bytes
453ed2e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1e08323
453ed2e
fb15d47
453ed2e
 
1e08323
453ed2e
01e1199
453ed2e
 
 
 
 
 
 
 
 
 
 
 
811e3ea
453ed2e
 
01e1199
 
 
453ed2e
 
 
 
 
 
04cb33c
 
0277b1d
04cb33c
453ed2e
 
 
 
 
 
04cb33c
5921c24
15643d7
 
453ed2e
15643d7
a02d083
453ed2e
0277b1d
453ed2e
 
 
 
6ec4b8d
a02d083
6ec4b8d
453ed2e
 
 
 
 
a02d083
0277b1d
453ed2e
 
 
 
 
 
 
 
 
 
 
 
 
5921c24
453ed2e
 
 
 
 
 
04cb33c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
import torch
import os
import gradio as gr
from PIL import Image
from diffusers import (
    StableDiffusionPipeline,
    StableDiffusionControlNetImg2ImgPipeline,
    ControlNetModel,
    DDIMScheduler,
    DPMSolverMultistepScheduler,
    DEISMultistepScheduler,
    HeunDiscreteScheduler,
    EulerDiscreteScheduler,
)

# Load controlnet model in float16 precision
controlnet = ControlNetModel.from_pretrained(
    "monster-labs/control_v1p_sd15_qrcode_monster", torch_dtype=torch.float16
)

# Load the pipeline in float16 precision
pipe = StableDiffusionControlNetImg2ImgPipeline.from_pretrained(
    "SG161222/Realistic_Vision_V2.0",
    controlnet=controlnet,
    safety_checker=None,
    torch_dtype=torch.float16,
).to("cuda")
pipe.enable_xformers_memory_efficient_attention()

SAMPLER_MAP = {
    "DPM++ Karras SDE": lambda config: DPMSolverMultistepScheduler.from_config(config, use_karras=True, algorithm_type="sde-dpmsolver++"),
    "Euler": lambda config: EulerDiscreteScheduler.from_config(config),
}

def inference(
    control_image: Image.Image,
    prompt: str,
    negative_prompt: str,
    guidance_scale: float = 8.0,
    controlnet_conditioning_scale: float = 1,
    strength: float = 0.9,
    seed: int = -1,
    sampler = "DPM++ Karras SDE",
):
    if prompt is None or prompt == "":
        raise gr.Error("Prompt is required")
    
    # Generate init_image using the "Realistic Vision V2.0" model
    init_image = pipe(prompt, height=512, width=512).images[0]
    
    control_image = control_image.resize((512, 512))
    pipe.scheduler = SAMPLER_MAP[sampler](pipe.scheduler.config)
    generator = torch.manual_seed(seed) if seed != -1 else torch.Generator()
    
    out = pipe(
        prompt=prompt,
        negative_prompt=negative_prompt,
        image=init_image,
        control_image=control_image,
        guidance_scale=guidance_scale,
        controlnet_conditioning_scale=controlnet_conditioning_scale,
        generator=generator,
        strength=strength,
        num_inference_steps=30,
    )
    return out.images[0]

with gr.Blocks() as app:
    gr.Markdown(
        '''
        # Illusion Diffusion πŸŒ€
        ## Generate stunning illusion artwork with Stable Diffusion
        **[Follow me on Twitter](https://twitter.com/angrypenguinPNG)**
        '''
    )
    
    with gr.Row():
        with gr.Column():
            control_image = gr.Image(label="Input Illusion", type="pil")
            prompt = gr.Textbox(label="Prompt")
            negative_prompt = gr.Textbox(label="Negative Prompt", value="ugly, disfigured, low quality, blurry, nsfw")
            with gr.Accordion(label="Advanced Options", open=False):
                controlnet_conditioning_scale = gr.Slider(minimum=0.0, maximum=5.0, step=0.01, value=1.1, label="Controlnet Conditioning Scale")
                strength = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, value=0.9, label="Strength")
                guidance_scale = gr.Slider(minimum=0.0, maximum=50.0, step=0.25, value=7.5, label="Guidance Scale")
                sampler = gr.Dropdown(choices=list(SAMPLER_MAP.keys()), value="DPM++ Karras SDE")
                seed = gr.Slider(minimum=-1, maximum=9999999999, step=1, value=2313123, label="Seed", randomize=True)
            run_btn = gr.Button("Run")
        with gr.Column():
            result_image = gr.Image(label="Illusion Diffusion Output")
            
    run_btn.click(
        inference,
        inputs=[control_image, prompt, negative_prompt, guidance_scale, controlnet_conditioning_scale, strength, seed, sampler],
        outputs=[result_image]
    )

app.queue(concurrency_count=4, max_size=20)

if __name__ == "__main__":
    app.launch(debug=True)