ROCAI / pages /对话式文本检测工具.py
hjp157688's picture
Update pages/对话式文本检测工具.py
95ee9f3 verified
import torch
import streamlit as st
import subprocess
import os
import torch
import torch.nn as nn
import torch.nn.functional as F
from transformers import BertTokenizer
import appbuilder
from transformers import BertModel
#加载预训练模型
pretrained = BertModel.from_pretrained('hfl/chinese-macbert-base')
#需要移动到cuda上
device = 'cuda' if torch.cuda.is_available() else 'cpu'
pretrained.to(device)
#不训练,不需要计算梯度
for param in pretrained.parameters():
param.requires_grad_(False)
#多头注意力机制
class MultiHeadAttention(nn.Module):
def __init__(self, hidden_size, num_heads):
super(MultiHeadAttention, self).__init__()
# 确保隐藏层特征数能够被头数整除
assert hidden_size % num_heads == 0
self.hidden_size = hidden_size
self.num_heads = num_heads
self.head_dim = hidden_size // num_heads # 计算每个头的维度
# 定义线性层,用于对查询、键、值进行线性变换
self.linear_q = nn.Linear(hidden_size, hidden_size)
self.linear_k = nn.Linear(hidden_size, hidden_size)
self.linear_v = nn.Linear(hidden_size, hidden_size)
self.linear_out = nn.Linear(hidden_size, hidden_size) # 定义输出线性层,用于整合多头注意力后的输出
def forward(self, x):
batch_size, seq_len, _ = x.size()
# 对输入进行线性变换,并将其分割为多个头
q = self.linear_q(x).view(batch_size, seq_len, self.num_heads, self.head_dim).transpose(1, 2)
k = self.linear_k(x).view(batch_size, seq_len, self.num_heads, self.head_dim).transpose(1, 2)
v = self.linear_v(x).view(batch_size, seq_len, self.num_heads, self.head_dim).transpose(1, 2)
# 计算注意力分数
scores = torch.matmul(q, k.transpose(-2, -1)) / torch.sqrt(torch.tensor(self.head_dim, dtype=torch.float))
attn_weights = F.softmax(scores, dim=-1) # 计算注意力权重
# 根据注意力权重对值进行加权求和
context = torch.matmul(attn_weights, v).transpose(1, 2).contiguous().view(batch_size, seq_len, self.hidden_size)
out = self.linear_out(context) # 整合多头注意力的输出
return out
class Model(nn.Module):
def __init__(self):
super(Model, self).__init__()
self.fc1 = nn.Linear(768, 512) # 第一层全连接层
self.fc2 = nn.Linear(512, 256) # 第二层全连接层
self.fc3 = nn.Linear(256, 2) # 第三层全连接层
self.dropout = nn.Dropout(p=0.5)
self.bn1 = nn.BatchNorm1d(512)
self.bn2 = nn.BatchNorm1d(256)
self.activation = nn.ReLU()
self.multihead_attention = MultiHeadAttention(hidden_size=768, num_heads=8) # 多头注意力模块
def forward(self, input_ids, attention_mask, token_type_ids):
out = pretrained(input_ids=input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids).last_hidden_state
# 应用多头注意力机制
out = self.multihead_attention(out)
out = out[:, 0] # 提取[CLS]标记的输出
out = self.activation(self.bn1(self.fc1(out)))
out = self.dropout(out)
out = self.activation(self.bn2(self.fc2(out)))
out = self.dropout(out)
out = self.fc3(out)
out = out.softmax(dim=1)
return out
def load_models_and_predict(text, device):
# 加载模型
MacBERT_base_CDialBias = torch.load('models/MacBERT-base-CDialBias.pth', map_location=torch.device('cpu'))
MacBERT_base_COLD = torch.load('models/MacBERT-base-CDialBias.pth', map_location=torch.device('cpu'))
# 获取密钥和ID
os.environ['APPBUILDER_TOKEN'] = "bce-v3/ALTAK-n2XgeA6FS3Q5E7Jab6UwE/850b44ebec64c4cad705986ab0b5e3df4b05d407"
app_id = "df881861-9fa6-40b6-b3bd-26df5f5d4b9a"
# 初始化agent实例
your_agent = appbuilder.AppBuilderClient(app_id)
# 创建会话id
conversation_id = your_agent.create_conversation()
# 加载字典和分词工具
tokenizer = BertTokenizer.from_pretrained('hfl/chinese-macbert-base')
# 对输入文本进行编码
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True)
# 将输入数据移动到相同的设备上
inputs = {k: v.to(device) for k, v in inputs.items()}
# 设置模型为评估模式
MacBERT_base_CDialBias.eval()
MacBERT_base_COLD.eval()
# 调用千帆api获取标签
msg = your_agent.run(conversation_id, text)
answer = msg.content.answer
# 进行预测
with torch.no_grad():
out1 = MacBERT_base_CDialBias(**inputs)
with torch.no_grad():
out2 = MacBERT_base_COLD(**inputs)
out1 = torch.argmax(out1, dim=1).item()
out2 = torch.argmax(out2, dim=1).item()
out3 = answer[0]
# 分析结果
if out3 == "1":
if out1 == out2 == 1:
result = "这句话具有攻击性和社会偏见"
elif out1 == 0 and out2 == 1:
result = "这句话具有攻击性,但无社会偏见"
elif out1 == 1 and out2 == 0:
result = "这句话不具有攻击性,但具有社会偏见"
else:
result = "这句话具有攻击性"
elif out3 == "0":
if out1 == out2 == 0:
result = "这句话不具有攻击性和社会偏见"
elif out1 == 0 and out2 == 1:
result = "这句话具有攻击性,但无社会偏见"
elif out1 == 1 and out2 == 0:
result = "这句话不具有攻击性,但具有社会偏见"
else:
result = "这句话不具有攻击性"
return result
def run_command(command):
try:
subprocess.run(command, shell=True, check=True)
except subprocess.CalledProcessError as e:
print(f"Error executing command: {e}")
#创建网页
st.title("☁礼貌用语检测器")
with st.sidebar:
# 初始化session state
if 'logged_in' not in st.session_state:
st.session_state.logged_in = False
# 用户名和密码输入
username = st.sidebar.text_input('用户名')
password = st.sidebar.text_input('密码', type='password')
# 登录按钮
if st.sidebar.button('登录'):
# 这里可以添加验证逻辑,例如检查用户名和密码是否正确
if username == 'admin' and password == '12345':
st.session_state.logged_in = True
st.sidebar.success('登录成功!')
else:
st.error('用户名或密码错误,请重试。')
st.stop()
#清空消息
clear = st.button("清除")
if clear:
st.session_state.clear()
st.divider()
#输出内容
if "memory" not in st.session_state:
st.session_state['memory'] = []
st.session_state['message'] = [{"role": "ai",
"content": "你好!我是“礼貌用语检测器”。在这里,我能够帮助你检测中文语言中的攻击性和社会偏见内容,维护一个文明、和谐的交流环境。请告诉我你的需求,我会尽力提供帮助。"}]
for message in st.session_state['message']:
st.chat_message(message["role"]).write(message["content"])
#输入内容
text = st.chat_input()
#运行
if text and st.session_state.logged_in == True:
#将问题保存进message和memory
st.session_state["message"].append({"role": "human", "content": text})
st.session_state["memory"].append(text)
st.chat_message("human").write(text)
#得到回答
with st.spinner("AI正在思考中,请稍等..."):
result = load_models_and_predict(text, device)
#将回答保存进message和memory
st.session_state["message"].append({"role": "ai", "content": result})
st.session_state["memory"].append(result)
st.chat_message("ai").write(result)
elif text and st.session_state.logged_in == False:
st.error('请先登录!')
st.stop()