File size: 3,620 Bytes
483de47
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
# ------------------------------------------------------------------------
# Copyright (c) 2022 megvii-research. All Rights Reserved.
# ------------------------------------------------------------------------
# Modified from Deformable DETR (https://github.com/fundamentalvision/Deformable-DETR)
# Copyright (c) 2020 SenseTime. All Rights Reserved.
# ------------------------------------------------------------------------
# Modified from DETR (https://github.com/facebookresearch/detr)
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
# ------------------------------------------------------------------------


"""
Train and eval functions used in main.py
"""
import math
import os
import sys
from typing import Iterable

import torch
import util.misc as utils

from datasets.data_prefetcher import data_dict_to_cuda


def train_one_epoch_mot(model: torch.nn.Module, criterion: torch.nn.Module,
                    data_loader: Iterable, optimizer: torch.optim.Optimizer,
                    device: torch.device, epoch: int, max_norm: float = 0):
    model.train()
    criterion.train()
    metric_logger = utils.MetricLogger(delimiter="  ")
    metric_logger.add_meter('lr', utils.SmoothedValue(window_size=1, fmt='{value:.6f}'))
    # metric_logger.add_meter('class_error', utils.SmoothedValue(window_size=1, fmt='{value:.2f}'))
    metric_logger.add_meter('grad_norm', utils.SmoothedValue(window_size=1, fmt='{value:.2f}'))
    header = 'Epoch: [{}]'.format(epoch)
    print_freq = 10

    # for samples, targets in metric_logger.log_every(data_loader, print_freq, header):
    for data_dict in metric_logger.log_every(data_loader, print_freq, header):
        data_dict = data_dict_to_cuda(data_dict, device)
        outputs = model(data_dict)

        loss_dict = criterion(outputs, data_dict)
        # print("iter {} after model".format(cnt-1))
        weight_dict = criterion.weight_dict
        losses = sum(loss_dict[k] * weight_dict[k] for k in loss_dict.keys() if k in weight_dict)

        # reduce losses over all GPUs for logging purposes
        loss_dict_reduced = utils.reduce_dict(loss_dict)
        # loss_dict_reduced_unscaled = {f'{k}_unscaled': v
        #                               for k, v in loss_dict_reduced.items()}
        loss_dict_reduced_scaled = {k: v * weight_dict[k]
                                    for k, v in loss_dict_reduced.items() if k in weight_dict}
        losses_reduced_scaled = sum(loss_dict_reduced_scaled.values())

        loss_value = losses_reduced_scaled.item()

        if not math.isfinite(loss_value):
            print("Loss is {}, stopping training".format(loss_value))
            print(loss_dict_reduced)
            sys.exit(1)

        optimizer.zero_grad()
        losses.backward()
        if max_norm > 0:
            grad_total_norm = torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm)
        else:
            grad_total_norm = utils.get_total_grad_norm(model.parameters(), max_norm)
        optimizer.step()

        # metric_logger.update(loss=loss_value, **loss_dict_reduced_scaled, **loss_dict_reduced_unscaled)
        metric_logger.update(loss=loss_value, **loss_dict_reduced_scaled)
        # metric_logger.update(class_error=loss_dict_reduced['class_error'])
        metric_logger.update(lr=optimizer.param_groups[0]["lr"])
        metric_logger.update(grad_norm=grad_total_norm)
        # gather the stats from all processes

    metric_logger.synchronize_between_processes()
    print("Averaged stats:", metric_logger)
    return {k: meter.global_avg for k, meter in metric_logger.meters.items()}