File size: 5,561 Bytes
85585d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e6367a7
51a7d9e
 
85585d6
 
 
51a7d9e
 
 
85585d6
e6367a7
 
 
 
85585d6
 
 
51a7d9e
b48b00e
51a7d9e
bd34f0b
 
 
82b38de
bd34f0b
 
 
 
 
51a7d9e
 
 
bd34f0b
 
 
 
 
 
 
51a7d9e
 
652ef04
51a7d9e
82b38de
85585d6
fd6304d
 
51a7d9e
 
85585d6
 
 
 
 
 
 
51a7d9e
fd6304d
85585d6
 
 
 
bd34f0b
85585d6
e6367a7
85585d6
51a7d9e
85585d6
51a7d9e
85585d6
 
51a7d9e
 
82b38de
51a7d9e
82b38de
51a7d9e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
82b38de
51a7d9e
 
85585d6
51a7d9e
 
bd34f0b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
51a7d9e
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
model_name = "gemma2:27b"

import os 

os.system("sudo apt install lshw")
os.system("curl https://ollama.ai/install.sh | sh")

import nest_asyncio
nest_asyncio.apply()

import os
import asyncio

# Run Async Ollama
# Taken from: https://stackoverflow.com/questions/77697302/how-to-run-ollama-in-google-colab
# NB: You may need to set these depending and get cuda working depending which backend you are running.
# Set environment variable for NVIDIA library
# Set environment variables for CUDA
os.environ['PATH'] += ':/usr/local/cuda/bin'
# Set LD_LIBRARY_PATH to include both /usr/lib64-nvidia and CUDA lib directories
os.environ['LD_LIBRARY_PATH'] = '/usr/lib64-nvidia:/usr/local/cuda/lib64'

async def run_process(cmd):
    print('>>> starting', *cmd)
    process = await asyncio.create_subprocess_exec(
        *cmd,
        stdout=asyncio.subprocess.PIPE,
        stderr=asyncio.subprocess.PIPE
    )

    # define an async pipe function
    async def pipe(lines):
        async for line in lines:
            print(line.decode().strip())

        await asyncio.gather(
            pipe(process.stdout),
            pipe(process.stderr),
        )

    # call it
    await asyncio.gather(pipe(process.stdout), pipe(process.stderr))

import asyncio
import threading

async def start_ollama_serve():
    await run_process(['ollama', 'serve'])

def run_async_in_thread(loop, coro):
    asyncio.set_event_loop(loop)
    loop.run_until_complete(coro)
    loop.close()

# Create a new event loop that will run in a new thread
new_loop = asyncio.new_event_loop()

# Start ollama serve in a separate thread so the cell won't block execution
thread = threading.Thread(target=run_async_in_thread, args=(new_loop, start_ollama_serve()))
thread.start()

# Load up model

os.system(f"ollama pull {model_name}")


import copy
import gradio as gr
import spaces
from llama_index.llms.ollama import Ollama
import llama_index
from llama_index.core.llms import ChatMessage


HF_TOKEN = os.environ.get("HF_TOKEN", None)
MODEL_ID_LIST = ["google/gemma-2-27b-it"]
MODEL_NAME = MODEL_ID.split("/")[-1]

os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"


gemma2 = Ollama(model=model_name, request_timeout=30.0)


TITLE = "<h1><center>Chatbox</center></h1>"

DESCRIPTION = f"""
<h3>MODEL: <a href="https://hf.co/{MODELS}">{MODEL_NAME}</a></h3>
<center>
<p>Gemma is the large language model built by Google.
<br>
Feel free to test without log.
</p>
</center>
"""

CSS = """
.duplicate-button {
    margin: auto !important;
    color: white !important;
    background: black !important;
    border-radius: 100vh !important;
}
h3 {
    text-align: center;
}
"""


@spaces.GPU(duration=90)
def stream_chat(message: str, history: list, temperature: float, context_window: int, top_p: float, top_k: int, penalty: float):
    print(f'message is - {message}')
    print(f'history is - {history}')
    conversation = []
    for prompt, answer in history:
        conversation.extend([
            ChatMessage(
            role="user", content=prompt
            ),
            ChatMessage(role="assistant", content=answer),
        ])
    messages = [ChatMessage(role="user", content=message)]

    print(f"Conversation is -\n{conversation}")

    resp = gemma2.stream_chat(
        message = messages,
        chat_history = conversation,
        top_p=top_p,
        top_k=top_k,
        repeat_penalty=penalty,
        context_window=context_window,            
    )
        

    for r in resp:
        yield r.delta


chatbot = gr.Chatbot(height=600)

with gr.Blocks(css=CSS, theme="soft") as demo:
    gr.HTML(TITLE)
    gr.HTML(DESCRIPTION)
    gr.DuplicateButton(value="Duplicate Space for private use", elem_classes="duplicate-button")
    gr.ChatInterface(
        fn=stream_chat,
        chatbot=chatbot,
        fill_height=True,
        additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False),
        additional_inputs=[
            gr.Slider(
                minimum=0,
                maximum=1,
                step=0.1,
                value=0.8,
                label="Temperature",
                render=False,
            ),
            gr.Slider(
                minimum=128,
                maximum=2048,
                step=1,
                value=1024,
                label="Context window",
                render=False,
            ),
            gr.Slider(
                minimum=0.0,
                maximum=1.0,
                step=0.1,
                value=0.8,
                label="top_p",
                render=False,
            ),
            gr.Slider(
                minimum=1,
                maximum=20,
                step=1,
                value=20,
                label="top_k",
                render=False,
            ),
            gr.Slider(
                minimum=0.0,
                maximum=2.0,
                step=0.1,
                value=1.0,
                label="Repetition penalty",
                render=False,
            ),
        ],
        examples=[
            ["Help me study vocabulary: write a sentence for me to fill in the blank, and I'll try to pick the correct option."],
            ["What are 5 creative things I could do with my kids' art? I don't want to throw them away, but it's also so much clutter."],
            ["Tell me a random fun fact about the Roman Empire."],
            ["Show me a code snippet of a website's sticky header in CSS and JavaScript."],
        ],
        cache_examples=False,
    )


if __name__ == "__main__":
    demo.launch()