File size: 3,693 Bytes
cc5b602
6f619d7
6386510
c4592e6
51a7d9e
6386510
6d1d1e9
51a7d9e
6386510
e6367a7
 
6d1d1e9
51a7d9e
bd34f0b
d6256ce
6386510
 
bd34f0b
6d1d1e9
bd34f0b
 
51a7d9e
6386510
51a7d9e
 
bd34f0b
 
 
 
 
 
 
51a7d9e
 
da59244
6386510
 
6d1d1e9
 
 
 
6386510
bbd8145
4ed884e
 
 
 
 
 
 
 
 
 
 
6d1d1e9
c4592e6
 
 
6d1d1e9
4ed884e
c4592e6
 
 
6738356
 
27dc368
51a7d9e
6386510
51a7d9e
82b38de
51a7d9e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4ed884e
51a7d9e
 
6d1d1e9
51a7d9e
 
bd34f0b
 
 
 
4ed884e
bd34f0b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4ed884e
bd34f0b
 
 
51a7d9e
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
import os
import time
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
import gradio as gr

MODEL_LIST = ["openbmb/MiniCPM-1B-sft-bf16", "openbmb/MiniCPM-S-1B-sft"]
HF_TOKEN = os.environ.get("HF_TOKEN", None)
MODEL_ID = os.environ.get("MODEL_ID", None)
MODEL_NAME = MODEL_ID.split("/")[-1]

TITLE = "<h1><center>MiniCPM-1B-chat</center></h1>"

DESCRIPTION = f"""
<h3>MODEL NOW: <a href="https://hf.co/{MODEL_ID}">{MODEL_NAME}</a></h3>
"""
PLACEHOLDER = """
<center>
<p>MiniCPM is an End-Size LLM developed by ModelBest Inc. and TsinghuaNLP, with only 1.2B parameters excluding embeddings.</p>
</center>
"""


CSS = """
.duplicate-button {
    margin: auto !important;
    color: white !important;
    background: black !important;
    border-radius: 100vh !important;
}
h3 {
    text-align: center;
}
"""

model = AutoModelForCausalLM.from_pretrained(
    MODEL_ID, 
    torch_dtype=torch.bfloat16, 
    device_map='auto', 
    trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)


def stream_chat(
    message: str, 
    history: list, 
    temperature: float = 0.8, 
    max_new_tokens: int = 1024, 
    top_p: float = 1.0, 
    top_k: int = 20, 
    penalty: float = 1.2
):
    print(f'message: {message}')
    print(f'history: {history}')
    for resp, history in model.chat(
        tokenizer,
        query = message,
        history = history,
        max_length = max_new_tokens,
        do_sample = False if temperature == 0 else True,
        top_p = top_p,
        top_k = top_k,
        temperature = temperature,
    ):
        yield resp


chatbot = gr.Chatbot(height=600, placeholder=PLACEHOLDER)

with gr.Blocks(css=CSS, theme="soft") as demo:
    gr.HTML(TITLE)
    gr.HTML(DESCRIPTION)
    gr.DuplicateButton(value="Duplicate Space for private use", elem_classes="duplicate-button")
    gr.ChatInterface(
        fn=stream_chat,
        chatbot=chatbot,
        fill_height=True,
        additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False),
        additional_inputs=[
            gr.Slider(
                minimum=0,
                maximum=1,
                step=0.1,
                value=0.8,
                label="Temperature",
                render=False,
            ),
            gr.Slider(
                minimum=128,
                maximum=8192,
                step=1,
                value=1024,
                label="Max Length",
                render=False,
            ),
            gr.Slider(
                minimum=0.0,
                maximum=1.0,
                step=0.1,
                value=1.0,
                label="top_p",
                render=False,
            ),
            gr.Slider(
                minimum=1,
                maximum=20,
                step=1,
                value=20,
                label="top_k",
                render=False,
            ),
            gr.Slider(
                minimum=0.0,
                maximum=2.0,
                step=0.1,
                value=1.2,
                label="Repetition penalty",
                render=False,
            ),
        ],
        examples=[
            ["Help me study vocabulary: write a sentence for me to fill in the blank, and I'll try to pick the correct option."],
            ["What are 5 creative things I could do with my kids' art? I don't want to throw them away, but it's also so much clutter."],
            ["Tell me a random fun fact about the Roman Empire."],
            ["Show me a code snippet of a website's sticky header in CSS and JavaScript."],
        ],
        cache_examples=False,
    )


if __name__ == "__main__":
    demo.launch()