import torch import torch.utils.data import numpy as np import torchvision.utils as vutils import cv2 from matplotlib.cm import get_cmap import matplotlib as mpl import matplotlib.cm as cm def vis_disparity(disp, return_rgb=False): disp_vis = (disp - disp.min()) / (disp.max() - disp.min()) * 255.0 disp_vis = disp_vis.astype("uint8") disp_vis = cv2.applyColorMap(disp_vis, cv2.COLORMAP_INFERNO) if return_rgb: disp_vis = cv2.cvtColor(disp_vis, cv2.COLOR_BGR2RGB) return disp_vis def gen_error_colormap(): cols = np.array( [[0 / 3.0, 0.1875 / 3.0, 49, 54, 149], [0.1875 / 3.0, 0.375 / 3.0, 69, 117, 180], [0.375 / 3.0, 0.75 / 3.0, 116, 173, 209], [0.75 / 3.0, 1.5 / 3.0, 171, 217, 233], [1.5 / 3.0, 3 / 3.0, 224, 243, 248], [3 / 3.0, 6 / 3.0, 254, 224, 144], [6 / 3.0, 12 / 3.0, 253, 174, 97], [12 / 3.0, 24 / 3.0, 244, 109, 67], [24 / 3.0, 48 / 3.0, 215, 48, 39], [48 / 3.0, np.inf, 165, 0, 38]], dtype=np.float32) cols[:, 2: 5] /= 255. return cols def disp_error_img(D_est_tensor, D_gt_tensor, abs_thres=3., rel_thres=0.05, dilate_radius=1): D_gt_np = D_gt_tensor.detach().cpu().numpy() D_est_np = D_est_tensor.detach().cpu().numpy() B, H, W = D_gt_np.shape # valid mask mask = D_gt_np > 0 # error in percentage. When error <= 1, the pixel is valid since <= 3px & 5% error = np.abs(D_gt_np - D_est_np) error[np.logical_not(mask)] = 0 error[mask] = np.minimum(error[mask] / abs_thres, (error[mask] / D_gt_np[mask]) / rel_thres) # get colormap cols = gen_error_colormap() # create error image error_image = np.zeros([B, H, W, 3], dtype=np.float32) for i in range(cols.shape[0]): error_image[np.logical_and(error >= cols[i][0], error < cols[i][1])] = cols[i, 2:] # TODO: imdilate # error_image = cv2.imdilate(D_err, strel('disk', dilate_radius)); error_image[np.logical_not(mask)] = 0. # show color tag in the top-left cornor of the image for i in range(cols.shape[0]): distance = 20 error_image[:, :10, i * distance:(i + 1) * distance, :] = cols[i, 2:] return torch.from_numpy(np.ascontiguousarray(error_image.transpose([0, 3, 1, 2]))) def save_images(logger, mode_tag, images_dict, global_step): images_dict = tensor2numpy(images_dict) for tag, values in images_dict.items(): if not isinstance(values, list) and not isinstance(values, tuple): values = [values] for idx, value in enumerate(values): if len(value.shape) == 3: value = value[:, np.newaxis, :, :] value = value[:1] value = torch.from_numpy(value) image_name = '{}/{}'.format(mode_tag, tag) if len(values) > 1: image_name = image_name + "_" + str(idx) logger.add_image(image_name, vutils.make_grid(value, padding=0, nrow=1, normalize=True, scale_each=True), global_step) def tensor2numpy(var_dict): for key, vars in var_dict.items(): if isinstance(vars, np.ndarray): var_dict[key] = vars elif isinstance(vars, torch.Tensor): var_dict[key] = vars.data.cpu().numpy() else: raise NotImplementedError("invalid input type for tensor2numpy") return var_dict def viz_depth_tensor_from_monodepth2(disp, return_numpy=False, colormap='plasma'): # visualize inverse depth assert isinstance(disp, torch.Tensor) disp = disp.numpy() vmax = np.percentile(disp, 95) normalizer = mpl.colors.Normalize(vmin=disp.min(), vmax=vmax) mapper = cm.ScalarMappable(norm=normalizer, cmap=colormap) colormapped_im = (mapper.to_rgba(disp)[:, :, :3] * 255).astype(np.uint8) # [H, W, 3] if return_numpy: return colormapped_im viz = torch.from_numpy(colormapped_im).permute(2, 0, 1) # [3, H, W] return viz