unimatch / dataloader /stereo /transforms.py
haofeixu's picture
unimatch demo
9ef8038
raw
history blame
13.5 kB
from __future__ import division
import torch
import numpy as np
from PIL import Image
import torchvision.transforms.functional as F
import random
import cv2
class Compose(object):
def __init__(self, transforms):
self.transforms = transforms
def __call__(self, sample):
for t in self.transforms:
sample = t(sample)
return sample
class ToTensor(object):
"""Convert numpy array to torch tensor"""
def __init__(self, no_normalize=False):
self.no_normalize = no_normalize
def __call__(self, sample):
left = np.transpose(sample['left'], (2, 0, 1)) # [3, H, W]
if self.no_normalize:
sample['left'] = torch.from_numpy(left)
else:
sample['left'] = torch.from_numpy(left) / 255.
right = np.transpose(sample['right'], (2, 0, 1))
if self.no_normalize:
sample['right'] = torch.from_numpy(right)
else:
sample['right'] = torch.from_numpy(right) / 255.
# disp = np.expand_dims(sample['disp'], axis=0) # [1, H, W]
if 'disp' in sample.keys():
disp = sample['disp'] # [H, W]
sample['disp'] = torch.from_numpy(disp)
return sample
class Normalize(object):
"""Normalize image, with type tensor"""
def __init__(self, mean, std):
self.mean = mean
self.std = std
def __call__(self, sample):
norm_keys = ['left', 'right']
for key in norm_keys:
# Images have converted to tensor, with shape [C, H, W]
for t, m, s in zip(sample[key], self.mean, self.std):
t.sub_(m).div_(s)
return sample
class RandomCrop(object):
def __init__(self, img_height, img_width):
self.img_height = img_height
self.img_width = img_width
def __call__(self, sample):
ori_height, ori_width = sample['left'].shape[:2]
# pad zero when crop size is larger than original image size
if self.img_height > ori_height or self.img_width > ori_width:
# can be used for only pad one side
top_pad = max(self.img_height - ori_height, 0)
right_pad = max(self.img_width - ori_width, 0)
# try edge padding
sample['left'] = np.lib.pad(sample['left'],
((top_pad, 0), (0, right_pad), (0, 0)),
mode='edge')
sample['right'] = np.lib.pad(sample['right'],
((top_pad, 0), (0, right_pad), (0, 0)),
mode='edge')
if 'disp' in sample.keys():
sample['disp'] = np.lib.pad(sample['disp'],
((top_pad, 0), (0, right_pad)),
mode='constant',
constant_values=0)
# update image resolution
ori_height, ori_width = sample['left'].shape[:2]
assert self.img_height <= ori_height and self.img_width <= ori_width
# Training: random crop
self.offset_x = np.random.randint(ori_width - self.img_width + 1)
start_height = 0
assert ori_height - start_height >= self.img_height
self.offset_y = np.random.randint(start_height, ori_height - self.img_height + 1)
sample['left'] = self.crop_img(sample['left'])
sample['right'] = self.crop_img(sample['right'])
if 'disp' in sample.keys():
sample['disp'] = self.crop_img(sample['disp'])
return sample
def crop_img(self, img):
return img[self.offset_y:self.offset_y + self.img_height,
self.offset_x:self.offset_x + self.img_width]
class RandomVerticalFlip(object):
"""Randomly vertically filps"""
def __call__(self, sample):
if np.random.random() < 0.5:
sample['left'] = np.copy(np.flipud(sample['left']))
sample['right'] = np.copy(np.flipud(sample['right']))
sample['disp'] = np.copy(np.flipud(sample['disp']))
return sample
class ToPILImage(object):
def __call__(self, sample):
sample['left'] = Image.fromarray(sample['left'].astype('uint8'))
sample['right'] = Image.fromarray(sample['right'].astype('uint8'))
return sample
class ToNumpyArray(object):
def __call__(self, sample):
sample['left'] = np.array(sample['left']).astype(np.float32)
sample['right'] = np.array(sample['right']).astype(np.float32)
return sample
# Random coloring
class RandomContrast(object):
"""Random contrast"""
def __init__(self,
asymmetric_color_aug=True,
):
self.asymmetric_color_aug = asymmetric_color_aug
def __call__(self, sample):
if np.random.random() < 0.5:
contrast_factor = np.random.uniform(0.8, 1.2)
sample['left'] = F.adjust_contrast(sample['left'], contrast_factor)
if self.asymmetric_color_aug and np.random.random() < 0.5:
contrast_factor = np.random.uniform(0.8, 1.2)
sample['right'] = F.adjust_contrast(sample['right'], contrast_factor)
return sample
class RandomGamma(object):
def __init__(self,
asymmetric_color_aug=True,
):
self.asymmetric_color_aug = asymmetric_color_aug
def __call__(self, sample):
if np.random.random() < 0.5:
gamma = np.random.uniform(0.7, 1.5) # adopted from FlowNet
sample['left'] = F.adjust_gamma(sample['left'], gamma)
if self.asymmetric_color_aug and np.random.random() < 0.5:
gamma = np.random.uniform(0.7, 1.5) # adopted from FlowNet
sample['right'] = F.adjust_gamma(sample['right'], gamma)
return sample
class RandomBrightness(object):
def __init__(self,
asymmetric_color_aug=True,
):
self.asymmetric_color_aug = asymmetric_color_aug
def __call__(self, sample):
if np.random.random() < 0.5:
brightness = np.random.uniform(0.5, 2.0)
sample['left'] = F.adjust_brightness(sample['left'], brightness)
if self.asymmetric_color_aug and np.random.random() < 0.5:
brightness = np.random.uniform(0.5, 2.0)
sample['right'] = F.adjust_brightness(sample['right'], brightness)
return sample
class RandomHue(object):
def __init__(self,
asymmetric_color_aug=True,
):
self.asymmetric_color_aug = asymmetric_color_aug
def __call__(self, sample):
if np.random.random() < 0.5:
hue = np.random.uniform(-0.1, 0.1)
sample['left'] = F.adjust_hue(sample['left'], hue)
if self.asymmetric_color_aug and np.random.random() < 0.5:
hue = np.random.uniform(-0.1, 0.1)
sample['right'] = F.adjust_hue(sample['right'], hue)
return sample
class RandomSaturation(object):
def __init__(self,
asymmetric_color_aug=True,
):
self.asymmetric_color_aug = asymmetric_color_aug
def __call__(self, sample):
if np.random.random() < 0.5:
saturation = np.random.uniform(0.8, 1.2)
sample['left'] = F.adjust_saturation(sample['left'], saturation)
if self.asymmetric_color_aug and np.random.random() < 0.5:
saturation = np.random.uniform(0.8, 1.2)
sample['right'] = F.adjust_saturation(sample['right'], saturation)
return sample
class RandomColor(object):
def __init__(self,
asymmetric_color_aug=True,
):
self.asymmetric_color_aug = asymmetric_color_aug
def __call__(self, sample):
transforms = [RandomContrast(asymmetric_color_aug=self.asymmetric_color_aug),
RandomGamma(asymmetric_color_aug=self.asymmetric_color_aug),
RandomBrightness(asymmetric_color_aug=self.asymmetric_color_aug),
RandomHue(asymmetric_color_aug=self.asymmetric_color_aug),
RandomSaturation(asymmetric_color_aug=self.asymmetric_color_aug)]
sample = ToPILImage()(sample)
if np.random.random() < 0.5:
# A single transform
t = random.choice(transforms)
sample = t(sample)
else:
# Combination of transforms
# Random order
random.shuffle(transforms)
for t in transforms:
sample = t(sample)
sample = ToNumpyArray()(sample)
return sample
class RandomScale(object):
def __init__(self,
min_scale=-0.4,
max_scale=0.4,
crop_width=512,
nearest_interp=False, # for sparse gt
):
self.min_scale = min_scale
self.max_scale = max_scale
self.crop_width = crop_width
self.nearest_interp = nearest_interp
def __call__(self, sample):
if np.random.rand() < 0.5:
h, w = sample['disp'].shape
scale_x = 2 ** np.random.uniform(self.min_scale, self.max_scale)
scale_x = np.clip(scale_x, self.crop_width / float(w), None)
# only random scale x axis
sample['left'] = cv2.resize(sample['left'], None, fx=scale_x, fy=1., interpolation=cv2.INTER_LINEAR)
sample['right'] = cv2.resize(sample['right'], None, fx=scale_x, fy=1., interpolation=cv2.INTER_LINEAR)
sample['disp'] = cv2.resize(
sample['disp'], None, fx=scale_x, fy=1.,
interpolation=cv2.INTER_LINEAR if not self.nearest_interp else cv2.INTER_NEAREST
) * scale_x
if 'pseudo_disp' in sample and sample['pseudo_disp'] is not None:
sample['pseudo_disp'] = cv2.resize(sample['pseudo_disp'], None, fx=scale_x, fy=1.,
interpolation=cv2.INTER_LINEAR) * scale_x
return sample
class Resize(object):
def __init__(self,
scale_x=1,
scale_y=1,
nearest_interp=True, # for sparse gt
):
"""
Resize low-resolution data to high-res for mixed dataset training
"""
self.scale_x = scale_x
self.scale_y = scale_y
self.nearest_interp = nearest_interp
def __call__(self, sample):
scale_x = self.scale_x
scale_y = self.scale_y
sample['left'] = cv2.resize(sample['left'], None, fx=scale_x, fy=scale_y, interpolation=cv2.INTER_LINEAR)
sample['right'] = cv2.resize(sample['right'], None, fx=scale_x, fy=scale_y, interpolation=cv2.INTER_LINEAR)
sample['disp'] = cv2.resize(
sample['disp'], None, fx=scale_x, fy=scale_y,
interpolation=cv2.INTER_LINEAR if not self.nearest_interp else cv2.INTER_NEAREST
) * scale_x
return sample
class RandomGrayscale(object):
def __init__(self, p=0.2):
self.p = p
def __call__(self, sample):
if np.random.random() < self.p:
sample = ToPILImage()(sample)
# only supported in higher version pytorch
# default output channels is 1
sample['left'] = F.rgb_to_grayscale(sample['left'], num_output_channels=3)
sample['right'] = F.rgb_to_grayscale(sample['right'], num_output_channels=3)
sample = ToNumpyArray()(sample)
return sample
class RandomRotateShiftRight(object):
def __init__(self, p=0.5):
self.p = p
def __call__(self, sample):
if np.random.random() < self.p:
angle, pixel = 0.1, 2
px = np.random.uniform(-pixel, pixel)
ag = np.random.uniform(-angle, angle)
right_img = sample['right']
image_center = (
np.random.uniform(0, right_img.shape[0]),
np.random.uniform(0, right_img.shape[1])
)
rot_mat = cv2.getRotationMatrix2D(image_center, ag, 1.0)
right_img = cv2.warpAffine(
right_img, rot_mat, right_img.shape[1::-1], flags=cv2.INTER_LINEAR
)
trans_mat = np.float32([[1, 0, 0], [0, 1, px]])
right_img = cv2.warpAffine(
right_img, trans_mat, right_img.shape[1::-1], flags=cv2.INTER_LINEAR
)
sample['right'] = right_img
return sample
class RandomOcclusion(object):
def __init__(self, p=0.5,
occlusion_mask_zero=False):
self.p = p
self.occlusion_mask_zero = occlusion_mask_zero
def __call__(self, sample):
bounds = [50, 100]
if np.random.random() < self.p:
img2 = sample['right']
ht, wd = img2.shape[:2]
if self.occlusion_mask_zero:
mean_color = 0
else:
mean_color = np.mean(img2.reshape(-1, 3), axis=0)
x0 = np.random.randint(0, wd)
y0 = np.random.randint(0, ht)
dx = np.random.randint(bounds[0], bounds[1])
dy = np.random.randint(bounds[0], bounds[1])
img2[y0:y0 + dy, x0:x0 + dx, :] = mean_color
sample['right'] = img2
return sample