File size: 3,977 Bytes
9ef8038
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
import torch
import torch.utils.data
import numpy as np
import torchvision.utils as vutils
import cv2
from matplotlib.cm import get_cmap
import matplotlib as mpl
import matplotlib.cm as cm


def vis_disparity(disp, return_rgb=False):
    disp_vis = (disp - disp.min()) / (disp.max() - disp.min()) * 255.0
    disp_vis = disp_vis.astype("uint8")
    disp_vis = cv2.applyColorMap(disp_vis, cv2.COLORMAP_INFERNO)

    if return_rgb:
        disp_vis = cv2.cvtColor(disp_vis, cv2.COLOR_BGR2RGB)

    return disp_vis


def gen_error_colormap():
    cols = np.array(
        [[0 / 3.0, 0.1875 / 3.0, 49, 54, 149],
         [0.1875 / 3.0, 0.375 / 3.0, 69, 117, 180],
         [0.375 / 3.0, 0.75 / 3.0, 116, 173, 209],
         [0.75 / 3.0, 1.5 / 3.0, 171, 217, 233],
         [1.5 / 3.0, 3 / 3.0, 224, 243, 248],
         [3 / 3.0, 6 / 3.0, 254, 224, 144],
         [6 / 3.0, 12 / 3.0, 253, 174, 97],
         [12 / 3.0, 24 / 3.0, 244, 109, 67],
         [24 / 3.0, 48 / 3.0, 215, 48, 39],
         [48 / 3.0, np.inf, 165, 0, 38]], dtype=np.float32)
    cols[:, 2: 5] /= 255.
    return cols


def disp_error_img(D_est_tensor, D_gt_tensor, abs_thres=3., rel_thres=0.05, dilate_radius=1):
    D_gt_np = D_gt_tensor.detach().cpu().numpy()
    D_est_np = D_est_tensor.detach().cpu().numpy()
    B, H, W = D_gt_np.shape
    # valid mask
    mask = D_gt_np > 0
    # error in percentage. When error <= 1, the pixel is valid since <= 3px & 5%
    error = np.abs(D_gt_np - D_est_np)
    error[np.logical_not(mask)] = 0
    error[mask] = np.minimum(error[mask] / abs_thres, (error[mask] / D_gt_np[mask]) / rel_thres)
    # get colormap
    cols = gen_error_colormap()
    # create error image
    error_image = np.zeros([B, H, W, 3], dtype=np.float32)
    for i in range(cols.shape[0]):
        error_image[np.logical_and(error >= cols[i][0], error < cols[i][1])] = cols[i, 2:]
    # TODO: imdilate
    # error_image = cv2.imdilate(D_err, strel('disk', dilate_radius));
    error_image[np.logical_not(mask)] = 0.
    # show color tag in the top-left cornor of the image
    for i in range(cols.shape[0]):
        distance = 20
        error_image[:, :10, i * distance:(i + 1) * distance, :] = cols[i, 2:]

    return torch.from_numpy(np.ascontiguousarray(error_image.transpose([0, 3, 1, 2])))


def save_images(logger, mode_tag, images_dict, global_step):
    images_dict = tensor2numpy(images_dict)
    for tag, values in images_dict.items():
        if not isinstance(values, list) and not isinstance(values, tuple):
            values = [values]
        for idx, value in enumerate(values):
            if len(value.shape) == 3:
                value = value[:, np.newaxis, :, :]
            value = value[:1]
            value = torch.from_numpy(value)

            image_name = '{}/{}'.format(mode_tag, tag)
            if len(values) > 1:
                image_name = image_name + "_" + str(idx)
            logger.add_image(image_name, vutils.make_grid(value, padding=0, nrow=1, normalize=True, scale_each=True),
                             global_step)


def tensor2numpy(var_dict):
    for key, vars in var_dict.items():
        if isinstance(vars, np.ndarray):
            var_dict[key] = vars
        elif isinstance(vars, torch.Tensor):
            var_dict[key] = vars.data.cpu().numpy()
        else:
            raise NotImplementedError("invalid input type for tensor2numpy")

    return var_dict


def viz_depth_tensor_from_monodepth2(disp, return_numpy=False, colormap='plasma'):
    # visualize inverse depth
    assert isinstance(disp, torch.Tensor)

    disp = disp.numpy()
    vmax = np.percentile(disp, 95)
    normalizer = mpl.colors.Normalize(vmin=disp.min(), vmax=vmax)
    mapper = cm.ScalarMappable(norm=normalizer, cmap=colormap)
    colormapped_im = (mapper.to_rgba(disp)[:, :, :3] * 255).astype(np.uint8)  # [H, W, 3]

    if return_numpy:
        return colormapped_im

    viz = torch.from_numpy(colormapped_im).permute(2, 0, 1)  # [3, H, W]

    return viz