Spaces:
Runtime error
Runtime error
hanifekaptan
commited on
Commit
•
a98a45f
1
Parent(s):
380ac1c
Yazım hataları düzeltildi
Browse files
app.py
CHANGED
@@ -1,71 +1,71 @@
|
|
1 |
-
# Author: Hanife Kaptan
|
2 |
-
# Versions: python==3.11.2, xgboost==2.1.1, streamlit==1.36.0, scikit-learn==1.4.2, pandas==2.0.2
|
3 |
-
|
4 |
-
import pandas as pd
|
5 |
-
from sklearn.compose import ColumnTransformer
|
6 |
-
from sklearn.preprocessing import OneHotEncoder, StandardScaler
|
7 |
-
from sklearn.pipeline import Pipeline
|
8 |
-
from xgboost import XGBClassifier
|
9 |
-
import streamlit as st
|
10 |
-
|
11 |
-
df = pd.read_csv("akcigerKanseri.csv")
|
12 |
-
|
13 |
-
X = df.drop("lung_cancer", axis=1)
|
14 |
-
y = df["lung_cancer"]
|
15 |
-
|
16 |
-
preprocess = ColumnTransformer(
|
17 |
-
transformers = [("cat", OneHotEncoder(), ["gender"]), ("num", (StandardScaler()), ["age"])]
|
18 |
-
)
|
19 |
-
|
20 |
-
my_model = XGBClassifier()
|
21 |
-
|
22 |
-
pipe = Pipeline(steps=[("preprocessor", preprocess), ("model", my_model)])
|
23 |
-
pipe.fit(X, y)
|
24 |
-
|
25 |
-
def lung_cancer(gender, age, smoking, yellow_fingers, anxiety, peer_pressure,
|
26 |
-
chronic_disease, fatigue, allergy, wheezing, alcohol_consuming,
|
27 |
-
coughing, shortness_of_breath, swallowing_difficulty, chest_pain):
|
28 |
-
input_data = pd.DataFrame({"gender": [gender],
|
29 |
-
"age": [age],
|
30 |
-
"smoking": [smoking],
|
31 |
-
"yellow_fingers": [yellow_fingers],
|
32 |
-
"anxiety": [anxiety],
|
33 |
-
"peer_pressure": [peer_pressure],
|
34 |
-
"chronic_disease": [chronic_disease],
|
35 |
-
"fatigue": [fatigue],
|
36 |
-
"allergy": [allergy],
|
37 |
-
"wheezing": [wheezing],
|
38 |
-
"alcohol_consuming": [alcohol_consuming],
|
39 |
-
"coughing": [coughing],
|
40 |
-
"shortness_of_breath": [shortness_of_breath],
|
41 |
-
"swallowing_difficulty": [swallowing_difficulty],
|
42 |
-
"chest_pain": [chest_pain]})
|
43 |
-
prediction = pipe.predict(input_data)[0]
|
44 |
-
return prediction
|
45 |
-
|
46 |
-
st.title("Akciğer Kanseri Tespiti :hospital:: @hanifekaptan")
|
47 |
-
st.write("Kendinizle ilgili doğru seçenekleri seçiniz.")
|
48 |
-
gender = st.radio("Gender", ["Male", "Female"]) # male ve female 1 ve 0 değerlerine dönüştürülecek
|
49 |
-
age = st.number_input("Age", 0, 100)
|
50 |
-
smoking = st.radio("Smoking", [True, False])
|
51 |
-
yellow_fingers = st.radio("Yellow Fingers", [True, False])
|
52 |
-
anxiety = st.radio("Anxiety", [True, False])
|
53 |
-
peer_pressure = st.radio("
|
54 |
-
chronic_disease = st.radio("
|
55 |
-
fatigue = st.radio("
|
56 |
-
allergy = st.radio("
|
57 |
-
wheezing = st.radio("
|
58 |
-
alcohol_consuming = st.radio("
|
59 |
-
coughing = st.radio("
|
60 |
-
shortness_of_breath = st.radio("
|
61 |
-
swallowing_difficulty = st.radio("
|
62 |
-
chest_pain = st.radio("
|
63 |
-
|
64 |
-
if st.button("Predict"):
|
65 |
-
pred = lung_cancer(gender, age, smoking, yellow_fingers, anxiety, peer_pressure,
|
66 |
-
chronic_disease, fatigue, allergy, wheezing, alcohol_consuming,
|
67 |
-
coughing, shortness_of_breath, swallowing_difficulty, chest_pain)
|
68 |
-
if pred == 1:
|
69 |
-
st.write("Result: Positive")
|
70 |
-
elif pred == 0:
|
71 |
st.write("Result: Negative")
|
|
|
1 |
+
# Author: Hanife Kaptan
|
2 |
+
# Versions: python==3.11.2, xgboost==2.1.1, streamlit==1.36.0, scikit-learn==1.4.2, pandas==2.0.2
|
3 |
+
|
4 |
+
import pandas as pd
|
5 |
+
from sklearn.compose import ColumnTransformer
|
6 |
+
from sklearn.preprocessing import OneHotEncoder, StandardScaler
|
7 |
+
from sklearn.pipeline import Pipeline
|
8 |
+
from xgboost import XGBClassifier
|
9 |
+
import streamlit as st
|
10 |
+
|
11 |
+
df = pd.read_csv("akcigerKanseri.csv")
|
12 |
+
|
13 |
+
X = df.drop("lung_cancer", axis=1)
|
14 |
+
y = df["lung_cancer"]
|
15 |
+
|
16 |
+
preprocess = ColumnTransformer(
|
17 |
+
transformers = [("cat", OneHotEncoder(), ["gender"]), ("num", (StandardScaler()), ["age"])]
|
18 |
+
)
|
19 |
+
|
20 |
+
my_model = XGBClassifier()
|
21 |
+
|
22 |
+
pipe = Pipeline(steps=[("preprocessor", preprocess), ("model", my_model)])
|
23 |
+
pipe.fit(X, y)
|
24 |
+
|
25 |
+
def lung_cancer(gender, age, smoking, yellow_fingers, anxiety, peer_pressure,
|
26 |
+
chronic_disease, fatigue, allergy, wheezing, alcohol_consuming,
|
27 |
+
coughing, shortness_of_breath, swallowing_difficulty, chest_pain):
|
28 |
+
input_data = pd.DataFrame({"gender": [gender],
|
29 |
+
"age": [age],
|
30 |
+
"smoking": [smoking],
|
31 |
+
"yellow_fingers": [yellow_fingers],
|
32 |
+
"anxiety": [anxiety],
|
33 |
+
"peer_pressure": [peer_pressure],
|
34 |
+
"chronic_disease": [chronic_disease],
|
35 |
+
"fatigue": [fatigue],
|
36 |
+
"allergy": [allergy],
|
37 |
+
"wheezing": [wheezing],
|
38 |
+
"alcohol_consuming": [alcohol_consuming],
|
39 |
+
"coughing": [coughing],
|
40 |
+
"shortness_of_breath": [shortness_of_breath],
|
41 |
+
"swallowing_difficulty": [swallowing_difficulty],
|
42 |
+
"chest_pain": [chest_pain]})
|
43 |
+
prediction = pipe.predict(input_data)[0]
|
44 |
+
return prediction
|
45 |
+
|
46 |
+
st.title("Akciğer Kanseri Tespiti :hospital:: @hanifekaptan")
|
47 |
+
st.write("Kendinizle ilgili doğru seçenekleri seçiniz.")
|
48 |
+
gender = st.radio("Gender", ["Male", "Female"]) # male ve female 1 ve 0 değerlerine dönüştürülecek
|
49 |
+
age = st.number_input("Age", 0, 100)
|
50 |
+
smoking = st.radio("Smoking", [True, False])
|
51 |
+
yellow_fingers = st.radio("Yellow Fingers", [True, False])
|
52 |
+
anxiety = st.radio("Anxiety", [True, False])
|
53 |
+
peer_pressure = st.radio("Peer Pressure", [True, False])
|
54 |
+
chronic_disease = st.radio("Chronic Disease", [True, False])
|
55 |
+
fatigue = st.radio("Fatigue", [True, False])
|
56 |
+
allergy = st.radio("Allergy", [True, False])
|
57 |
+
wheezing = st.radio("Wheezing", [True, False])
|
58 |
+
alcohol_consuming = st.radio("Alcohol Consuming", [True, False])
|
59 |
+
coughing = st.radio("Coughing", [True, False])
|
60 |
+
shortness_of_breath = st.radio("Shortness of Breath", [True, False])
|
61 |
+
swallowing_difficulty = st.radio("Swallowing Difficulty", [True, False])
|
62 |
+
chest_pain = st.radio("Chest Pain", [True, False])
|
63 |
+
|
64 |
+
if st.button("Predict"):
|
65 |
+
pred = lung_cancer(gender, age, smoking, yellow_fingers, anxiety, peer_pressure,
|
66 |
+
chronic_disease, fatigue, allergy, wheezing, alcohol_consuming,
|
67 |
+
coughing, shortness_of_breath, swallowing_difficulty, chest_pain)
|
68 |
+
if pred == 1:
|
69 |
+
st.write("Result: Positive")
|
70 |
+
elif pred == 0:
|
71 |
st.write("Result: Negative")
|