File size: 5,637 Bytes
0455452
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
# coding=utf-8
# Copyright 2022 Meta and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tokenization classes for ESM."""
import os
from typing import List, Optional, Union

from transformers.tokenization_utils import PreTrainedTokenizer
from transformers.tokenization_utils_base import AddedToken
from transformers.utils import logging


logger = logging.get_logger(__name__)

VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt"}

PRETRAINED_VOCAB_FILES_MAP = {
    "vocab_file": {
        "facebook/esm2_t6_8M_UR50D": "https://huggingface.co/facebook/esm2_t6_8M_UR50D/resolve/main/vocab.txt",
        "facebook/esm2_t12_35M_UR50D": "https://huggingface.co/facebook/esm2_t12_35M_UR50D/resolve/main/vocab.txt",
    },
}

PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
    "facebook/esm2_t6_8M_UR50D": 1024,
    "facebook/esm2_t12_35M_UR50D": 1024,
}


def load_vocab_file(vocab_file):
    with open(vocab_file, "r") as f:
        lines = f.read().splitlines()
        return [l.strip() for l in lines]


class EsmTokenizer(PreTrainedTokenizer):
    """
    Constructs an ESM tokenizer.
    """

    vocab_files_names = VOCAB_FILES_NAMES
    pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
    max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
    model_input_names = ["input_ids", "attention_mask"]

    def __init__(self, vocab_file, **kwargs):
        super().__init__(**kwargs)
        self.all_tokens = load_vocab_file(vocab_file)
        self._id_to_token = {ind: tok for ind, tok in enumerate(self.all_tokens)}
        self._token_to_id = {tok: ind for ind, tok in enumerate(self.all_tokens)}
        self.unk_token = "<unk>"
        self.cls_token = "<cls>"
        self.pad_token = "<pad>"
        self.mask_token = "<mask>"
        self.eos_token = "<eos>"
        self.unique_no_split_tokens = self.all_tokens
        self._create_trie(self.unique_no_split_tokens)

    def _convert_id_to_token(self, index: int) -> str:
        return self._id_to_token.get(index, self.unk_token)

    def _convert_token_to_id(self, token: str) -> int:
        return self._token_to_id.get(token, self._token_to_id.get(self.unk_token))

    def _tokenize(self, text, **kwargs):
        return text.split()

    def get_vocab_size(self, with_added_tokens=False):
        return len(self._id_to_token)

    def get_vocab(self):
        return {token: i for i, token in enumerate(self.all_tokens)}

    def token_to_id(self, token: str) -> int:
        return self._token_to_id.get(token, self._token_to_id.get(self.unk_token))

    def id_to_token(self, index: int) -> str:
        return self._id_to_token.get(index, self.unk_token)

    def build_inputs_with_special_tokens(
        self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
    ) -> List[int]:
        if token_ids_1 is None:
            return [self.cls_token_id] + token_ids_0 + [self.eos_token_id]
        cls = [self.cls_token_id]
        sep = [self.eos_token_id]  # No sep token in ESM vocabulary
        return cls + token_ids_0 + sep + token_ids_1 + sep

    def get_special_tokens_mask(
        self, token_ids_0: List, token_ids_1: Optional[List] = None, already_has_special_tokens: bool = False
    ) -> List[int]:
        """
        Retrieves sequence ids from a token list that has no special tokens added. This method is called when adding
        special tokens using the tokenizer `prepare_for_model` or `encode_plus` methods.

        Args:
            token_ids_0 (`List[int]`):
                List of ids of the first sequence.
            token_ids_1 (`List[int]`, *optional*):
                List of ids of the second sequence.
            already_has_special_tokens (`bool`, *optional*, defaults to `False`):
                Whether or not the token list is already formatted with special tokens for the model.

        Returns:
            A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
        """
        if already_has_special_tokens:
            if token_ids_1 is not None:
                raise ValueError(
                    "You should not supply a second sequence if the provided sequence of "
                    "ids is already formatted with special tokens for the model."
                )

            return [1 if token in self.all_special_ids else 0 for token in token_ids_0]
        mask = [1] + ([0] * len(token_ids_0)) + [1]
        if token_ids_1 is not None:
            mask += [0] * len(token_ids_1) + [1]
        return mask

    def save_vocabulary(self, save_directory, filename_prefix):
        vocab_file = os.path.join(save_directory, (filename_prefix + "-" if filename_prefix else "") + "vocab.txt")
        with open(vocab_file, "w") as f:
            f.write("\n".join(self.all_tokens))
        return (vocab_file,)

    @property
    def vocab_size(self) -> int:
        return self.get_vocab_size(with_added_tokens=False)

    def _add_tokens(self, new_tokens: Union[List[str], List[AddedToken]], special_tokens: bool = False) -> int:
        return super()._add_tokens(new_tokens, special_tokens=True)