Spaces:
Sleeping
Sleeping
File size: 5,637 Bytes
0455452 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 |
# coding=utf-8
# Copyright 2022 Meta and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tokenization classes for ESM."""
import os
from typing import List, Optional, Union
from transformers.tokenization_utils import PreTrainedTokenizer
from transformers.tokenization_utils_base import AddedToken
from transformers.utils import logging
logger = logging.get_logger(__name__)
VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt"}
PRETRAINED_VOCAB_FILES_MAP = {
"vocab_file": {
"facebook/esm2_t6_8M_UR50D": "https://huggingface.co/facebook/esm2_t6_8M_UR50D/resolve/main/vocab.txt",
"facebook/esm2_t12_35M_UR50D": "https://huggingface.co/facebook/esm2_t12_35M_UR50D/resolve/main/vocab.txt",
},
}
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
"facebook/esm2_t6_8M_UR50D": 1024,
"facebook/esm2_t12_35M_UR50D": 1024,
}
def load_vocab_file(vocab_file):
with open(vocab_file, "r") as f:
lines = f.read().splitlines()
return [l.strip() for l in lines]
class EsmTokenizer(PreTrainedTokenizer):
"""
Constructs an ESM tokenizer.
"""
vocab_files_names = VOCAB_FILES_NAMES
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
model_input_names = ["input_ids", "attention_mask"]
def __init__(self, vocab_file, **kwargs):
super().__init__(**kwargs)
self.all_tokens = load_vocab_file(vocab_file)
self._id_to_token = {ind: tok for ind, tok in enumerate(self.all_tokens)}
self._token_to_id = {tok: ind for ind, tok in enumerate(self.all_tokens)}
self.unk_token = "<unk>"
self.cls_token = "<cls>"
self.pad_token = "<pad>"
self.mask_token = "<mask>"
self.eos_token = "<eos>"
self.unique_no_split_tokens = self.all_tokens
self._create_trie(self.unique_no_split_tokens)
def _convert_id_to_token(self, index: int) -> str:
return self._id_to_token.get(index, self.unk_token)
def _convert_token_to_id(self, token: str) -> int:
return self._token_to_id.get(token, self._token_to_id.get(self.unk_token))
def _tokenize(self, text, **kwargs):
return text.split()
def get_vocab_size(self, with_added_tokens=False):
return len(self._id_to_token)
def get_vocab(self):
return {token: i for i, token in enumerate(self.all_tokens)}
def token_to_id(self, token: str) -> int:
return self._token_to_id.get(token, self._token_to_id.get(self.unk_token))
def id_to_token(self, index: int) -> str:
return self._id_to_token.get(index, self.unk_token)
def build_inputs_with_special_tokens(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
if token_ids_1 is None:
return [self.cls_token_id] + token_ids_0 + [self.eos_token_id]
cls = [self.cls_token_id]
sep = [self.eos_token_id] # No sep token in ESM vocabulary
return cls + token_ids_0 + sep + token_ids_1 + sep
def get_special_tokens_mask(
self, token_ids_0: List, token_ids_1: Optional[List] = None, already_has_special_tokens: bool = False
) -> List[int]:
"""
Retrieves sequence ids from a token list that has no special tokens added. This method is called when adding
special tokens using the tokenizer `prepare_for_model` or `encode_plus` methods.
Args:
token_ids_0 (`List[int]`):
List of ids of the first sequence.
token_ids_1 (`List[int]`, *optional*):
List of ids of the second sequence.
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
Whether or not the token list is already formatted with special tokens for the model.
Returns:
A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
"""
if already_has_special_tokens:
if token_ids_1 is not None:
raise ValueError(
"You should not supply a second sequence if the provided sequence of "
"ids is already formatted with special tokens for the model."
)
return [1 if token in self.all_special_ids else 0 for token in token_ids_0]
mask = [1] + ([0] * len(token_ids_0)) + [1]
if token_ids_1 is not None:
mask += [0] * len(token_ids_1) + [1]
return mask
def save_vocabulary(self, save_directory, filename_prefix):
vocab_file = os.path.join(save_directory, (filename_prefix + "-" if filename_prefix else "") + "vocab.txt")
with open(vocab_file, "w") as f:
f.write("\n".join(self.all_tokens))
return (vocab_file,)
@property
def vocab_size(self) -> int:
return self.get_vocab_size(with_added_tokens=False)
def _add_tokens(self, new_tokens: Union[List[str], List[AddedToken]], special_tokens: bool = False) -> int:
return super()._add_tokens(new_tokens, special_tokens=True)
|