Spaces:
Running
on
T4
Running
on
T4
import gradio as gr | |
from huggingface_hub import snapshot_download | |
from threading import Thread | |
import time | |
import base64 | |
import numpy as np | |
import requests | |
import traceback | |
from dataclasses import dataclass | |
import io | |
from pydub import AudioSegment | |
import librosa | |
from utils.vad import get_speech_timestamps, collect_chunks, VadOptions | |
from server import serve | |
repo_id = "gpt-omni/mini-omni" | |
snapshot_download(repo_id, local_dir="./checkpoint", revision="main") | |
IP = "0.0.0.0" | |
PORT = 60808 | |
thread = Thread(target=serve, daemon=True) | |
thread.start() | |
API_URL = "http://0.0.0.0:60808/chat" | |
# recording parameters | |
IN_CHANNELS = 1 | |
IN_RATE = 24000 | |
IN_CHUNK = 1024 | |
IN_SAMPLE_WIDTH = 2 | |
VAD_STRIDE = 0.5 | |
# playing parameters | |
OUT_CHANNELS = 1 | |
OUT_RATE = 24000 | |
OUT_SAMPLE_WIDTH = 2 | |
OUT_CHUNK = 5760 | |
OUT_CHUNK = 20 * 4096 | |
OUT_RATE = 24000 | |
OUT_CHANNELS = 1 | |
def run_vad(ori_audio, sr): | |
_st = time.time() | |
try: | |
audio = ori_audio | |
audio = audio.astype(np.float32) / 32768.0 | |
sampling_rate = 16000 | |
if sr != sampling_rate: | |
audio = librosa.resample(audio, orig_sr=sr, target_sr=sampling_rate) | |
vad_parameters = {} | |
vad_parameters = VadOptions(**vad_parameters) | |
speech_chunks = get_speech_timestamps(audio, vad_parameters) | |
audio = collect_chunks(audio, speech_chunks) | |
duration_after_vad = audio.shape[0] / sampling_rate | |
if sr != sampling_rate: | |
# resample to original sampling rate | |
vad_audio = librosa.resample(audio, orig_sr=sampling_rate, target_sr=sr) | |
else: | |
vad_audio = audio | |
vad_audio = np.round(vad_audio * 32768.0).astype(np.int16) | |
vad_audio_bytes = vad_audio.tobytes() | |
return duration_after_vad, vad_audio_bytes, round(time.time() - _st, 4) | |
except Exception as e: | |
msg = f"[asr vad error] audio_len: {len(ori_audio)/(sr*2):.3f} s, trace: {traceback.format_exc()}" | |
print(msg) | |
return -1, ori_audio, round(time.time() - _st, 4) | |
def warm_up(): | |
frames = b"\x00\x00" * 1024 * 2 # 1024 frames of 2 bytes each | |
dur, frames, tcost = run_vad(frames, 16000) | |
print(f"warm up done, time_cost: {tcost:.3f} s") | |
warm_up() | |
class AppState: | |
stream: np.ndarray | None = None | |
sampling_rate: int = 0 | |
pause_detected: bool = False | |
started_talking = False | |
def determine_pause(audio: np.ndarray, sampling_rate: int, state: AppState) -> bool: | |
"""Take in the stream, determine if a pause happened""" | |
temp_audio = audio | |
dur_vad, _, time_vad = run_vad(temp_audio, sampling_rate) | |
duration = len(audio) / sampling_rate | |
if dur_vad > 0.5 and not state.started_talking: | |
print("started talking") | |
state.started_talking = True | |
return False | |
print(f"duration_after_vad: {dur_vad:.3f} s, time_vad: {time_vad:.3f} s") | |
return (duration - dur_vad) > 0.5 | |
def speaking(audio: np.ndarray, sampling_rate: int): | |
audio_buffer = io.BytesIO() | |
segment = AudioSegment( | |
audio.tobytes(), | |
frame_rate=sampling_rate, | |
sample_width=audio.dtype.itemsize, | |
channels=(1 if len(audio.shape) == 1 else audio.shape[1]), | |
) | |
segment.export(audio_buffer, format="wav") | |
with open("input_audio.wav", "wb") as f: | |
f.write(audio_buffer.getvalue()) | |
audio_bytes = audio_buffer.getvalue() | |
base64_encoded = str(base64.b64encode(audio_bytes), encoding="utf-8") | |
files = {"audio": base64_encoded} | |
with requests.post(API_URL, json=files, stream=True) as response: | |
try: | |
for chunk in response.iter_content(chunk_size=OUT_CHUNK): | |
if chunk: | |
# Create an audio segment from the numpy array | |
audio_segment = AudioSegment( | |
chunk, | |
frame_rate=OUT_RATE, | |
sample_width=OUT_SAMPLE_WIDTH, | |
channels=OUT_CHANNELS, | |
) | |
# Export the audio segment to MP3 bytes - use a high bitrate to maximise quality | |
mp3_io = io.BytesIO() | |
audio_segment.export(mp3_io, format="mp3", bitrate="320k") | |
# Get the MP3 bytes | |
mp3_bytes = mp3_io.getvalue() | |
mp3_io.close() | |
yield mp3_bytes | |
except Exception as e: | |
raise gr.Error(f"Error during audio streaming: {e}") | |
def process_audio(audio: tuple, state: AppState): | |
if state.stream is None: | |
state.stream = audio[1] | |
state.sampling_rate = audio[0] | |
else: | |
state.stream = np.concatenate((state.stream, audio[1])) | |
pause_detected = determine_pause(state.stream, state.sampling_rate, state) | |
state.pause_detected = pause_detected | |
if state.pause_detected and state.started_talking: | |
return gr.Audio(recording=False), state | |
return None, state | |
def response(state: AppState): | |
if not state.pause_detected: | |
return None, AppState() | |
for mp3_bytes in speaking(state.stream, state.sampling_rate): | |
yield mp3_bytes, state | |
yield None, AppState() | |
with gr.Blocks() as demo: | |
with gr.Row(): | |
with gr.Column(): | |
input_audio = gr.Audio( | |
label="Input Audio", sources="microphone", type="numpy" | |
) | |
with gr.Column(): | |
output_audio = gr.Audio(label="Output Audio", streaming=True, autoplay=True) | |
state = gr.State(value=AppState()) | |
stream = input_audio.stream( | |
process_audio, | |
[input_audio, state], | |
[input_audio, state], | |
stream_every=0.5, | |
time_limit=30, | |
) | |
respond = input_audio.stop_recording( | |
response, | |
[state], | |
[output_audio, state] | |
) | |
output_audio.stop( | |
lambda: gr.Audio(recording=True), | |
None, | |
[input_audio] | |
) | |
cancel = gr.Button("Stop Conversation", variant="stop") | |
cancel.click(lambda: AppState(), None, [state], cancels=[respond]) | |
demo.launch() | |