File size: 4,132 Bytes
521091c
4a37dab
 
 
 
 
 
 
 
41d06ba
4a37dab
 
 
 
 
 
 
 
 
 
 
 
 
 
891e37e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4a37dab
 
 
 
891e37e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
556b4ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
891e37e
 
4a37dab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
521091c
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
import gradio as gr
from huggingface_hub import snapshot_download
from threading import Thread
import os
import time
import gradio as gr
import base64
import numpy as np
import requests
import traceback

from server import serve

repo_id = "gpt-omni/mini-omni"
snapshot_download(repo_id, local_dir="./checkpoint", revision="main")

IP='0.0.0.0'
PORT=60808

thread = Thread(target=serve, daemon=True)
thread.start()

API_URL = "http://0.0.0.0:60808/chat"

# recording parameters
IN_CHANNELS = 1
IN_RATE = 24000
IN_CHUNK = 1024
IN_SAMPLE_WIDTH = 2
VAD_STRIDE = 0.5

# playing parameters
OUT_CHANNELS = 1
OUT_RATE = 24000
OUT_SAMPLE_WIDTH = 2
OUT_CHUNK = 5760



OUT_CHUNK = 4096
OUT_RATE = 24000
OUT_CHANNELS = 1

def run_vad(ori_audio, sr):
    _st = time.time()
    try:
        audio = np.frombuffer(ori_audio, dtype=np.int16)
        audio = audio.astype(np.float32) / 32768.0
        sampling_rate = 16000
        if sr != sampling_rate:
            audio = librosa.resample(audio, orig_sr=sr, target_sr=sampling_rate)

        vad_parameters = {}
        vad_parameters = VadOptions(**vad_parameters)
        speech_chunks = get_speech_timestamps(audio, vad_parameters)
        audio = collect_chunks(audio, speech_chunks)
        duration_after_vad = audio.shape[0] / sampling_rate

        if sr != sampling_rate:
            # resample to original sampling rate
            vad_audio = librosa.resample(audio, orig_sr=sampling_rate, target_sr=sr)
        else:
            vad_audio = audio
        vad_audio = np.round(vad_audio * 32768.0).astype(np.int16)
        vad_audio_bytes = vad_audio.tobytes()

        return duration_after_vad, vad_audio_bytes, round(time.time() - _st, 4)
    except Exception as e:
        msg = f"[asr vad error] audio_len: {len(ori_audio)/(sr*2):.3f} s, trace: {traceback.format_exc()}"
        print(msg)
        return -1, ori_audio, round(time.time() - _st, 4)


def warm_up():
    frames = b"\x00\x00" * 1024 * 2  # 1024 frames of 2 bytes each
    dur, frames, tcost = run_vad(frames, 16000)
    print(f"warm up done, time_cost: {tcost:.3f} s")

warm_up()

def determine_pause(stream: bytes, start_talking: bool) -> tuple[bytes, bool]:
    """Take in the stream, determine if a pause happened"""

    temp_audio = stream

    if len(temp_audio) > IN_SAMPLE_WIDTH * IN_RATE * IN_CHANNELS * VAD_STRIDE:
        dur_vad, vad_audio_bytes, time_vad = run_vad(temp_audio, IN_RATE)

        print(f"duration_after_vad: {dur_vad:.3f} s, time_vad: {time_vad:.3f} s")

        if dur_vad > 0.2 and not start_talking:
            if last_temp_audio is not None:
                st.session_state.frames.append(last_temp_audio)
            start_talking = True
        if start_talking:
            st.session_state.frames.append(temp_audio)
        if dur_vad < 0.1 and start_talking:
            st.session_state.recording = False
            print(f"speech end detected. excit")
        last_temp_audio = temp_audio
        temp_audio = b""


def process_audio(audio):
    filepath = audio
    print(f"filepath: {filepath}")
    if filepath is None:
        return

    cnt = 0
    with open(filepath, "rb") as f:
        data = f.read()
        base64_encoded = str(base64.b64encode(data), encoding="utf-8")
        files = {"audio": base64_encoded}
        tik = time.time()
        with requests.post(API_URL, json=files, stream=True) as response:
            try:
                for chunk in response.iter_content(chunk_size=OUT_CHUNK):
                    if chunk:
                        # Convert chunk to numpy array
                        if cnt == 0:
                            print(f"first chunk time cost: {time.time() - tik:.3f}")
                        cnt += 1
                        audio_data = np.frombuffer(chunk, dtype=np.int16)
                        audio_data = audio_data.reshape(-1, OUT_CHANNELS)
                        yield OUT_RATE, audio_data.astype(np.int16)

            except Exception as e:
                print(f"error: {e}")

def greet(name):
    return "Hello " + name + "!!"

demo = gr.Interface(fn=greet, inputs="text", outputs="text")
demo.launch()