File size: 2,231 Bytes
4479682
0022789
 
 
 
 
9148f31
0022789
b2cd494
 
 
 
 
 
 
ff46a0e
8bc7e88
9148f31
b2cd494
 
 
422fdbc
0022789
 
813561e
ff46a0e
 
82192ca
0022789
422fdbc
0022789
ff46a0e
0022789
 
f4668a8
 
0fcac03
f1841f9
e5ae8cb
 
f1841f9
154494a
f1841f9
154494a
f1841f9
e5ae8cb
 
f1841f9
0022789
 
f1841f9
 
 
0022789
 
ff46a0e
e5ae8cb
0022789
 
 
 
 
 
 
 
 
c5349e7
 
 
 
 
 
 
 
92f8a2c
f4668a8
c5349e7
 
0022789
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
import spaces
import gradio as gr
from gradio_imageslider import ImageSlider
from PIL import Image
import numpy as np
from aura_sr import AuraSR
import torch

# Force CPU usage
torch.set_default_tensor_type(torch.FloatTensor)

# Override torch.load to always use CPU
original_load = torch.load
torch.load = lambda *args, **kwargs: original_load(*args, **kwargs, map_location=torch.device('cpu'))

# Initialize the AuraSR model
aura_sr = AuraSR.from_pretrained("fal/AuraSR-v2")

# Restore original torch.load
torch.load = original_load

@spaces.GPU
def process_image(input_image):
    if input_image is None:
        raise gr.Error("Please provide an image to upscale.")

    # Convert to PIL Image for resizing
    pil_image = Image.fromarray(input_image)

    upscaled_image = aura_sr.upscale_4x(pil_image)

    # Convert result to numpy array if it's not already
    result_array = np.array(upscaled_image)

    print(input_image, result_array)

    return (input_image, result_array)
    
title = """<h1 align="center">AuraSR</h1>
<p><center>Upscales your images to x4</center></p>
<p><center>
<a href="https://huggingface.co/fal/AuraSR-v2" target="_blank">[AuraSR-v2]</a>
<a href="https://blog.fal.ai/introducing-aurasr-an-open-reproduction-of-the-gigagan-upscaler-2/" target="_blank">[Blog Post]</a>
<a href="https://huggingface.co/fal-ai/AuraSR" target="_blank">[v1 Model Page]</a>
</center></p>
<br/>
<p>This is an open reproduction of the GigaGAN Upscaler from fal.ai</p>
"""

with gr.Blocks() as demo:
    
    gr.HTML(title)
    
    with gr.Row():
        with gr.Column(scale=1):
            input_image = gr.Image(label="Input Image", type="numpy")
            process_btn = gr.Button(value="Upscale Image", variant = "primary")
        with gr.Column(scale=1):
            output_slider = ImageSlider(label="Before / After", type="numpy")

    process_btn.click(
        fn=process_image,
        inputs=[input_image],
        outputs=output_slider
    )

    # Add examples
    gr.Examples(
        examples=[
            "image1.png",
            "image3.png"
        ],
        inputs=input_image,
        outputs=output_slider,
        fn=process_image,
        cache_examples=True,
    )

demo.launch(debug=True)