Spaces:
Runtime error
Runtime error
import gradio as gr | |
import torch | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
# Initialize the model and tokenizer | |
cuda = "cuda:0" if torch.cuda.is_available() else "cpu" | |
model = AutoModelForCausalLM.from_pretrained("goendalf666/salesGPT_v2", trust_remote_code=True).to(cuda) | |
tokenizer = AutoTokenizer.from_pretrained("microsoft/phi-1_5") | |
def interact_with_model(user_input): | |
# Construct conversation text for the model | |
conversation_text = ( | |
"You are in the role of a Salesman. " | |
"Here is a conversation: " | |
f"Customer: {user_input} Salesman: " | |
) | |
# Tokenize inputs | |
inputs = tokenizer(conversation_text, return_tensors="pt").to(cuda) | |
# Generate response | |
outputs = model.generate(**inputs, max_length=512) | |
response_text = tokenizer.batch_decode(outputs)[0] | |
# Extract only the newly generated text | |
new_text_start = len(conversation_text) | |
new_generated_text = response_text[new_text_start:].strip() | |
# Find where the next "Customer:" is, and truncate the text there | |
end_index = new_generated_text.find("Customer:") | |
if end_index != -1: | |
new_generated_text = new_generated_text[:end_index].strip() | |
# Ignore if the model puts "Salesman: " itself at the beginning | |
if new_generated_text.startswith("Salesman:"): | |
new_generated_text = new_generated_text[len("Salesman:"):].strip() | |
# Return the model's response | |
return new_generated_text | |
# Create Gradio Interface and launch it | |
iface = gr.Interface(fn=interact_with_model, inputs="text", outputs="text") | |
iface.launch() |