import gradio as gr from transformers import TrOCRProcessor, VisionEncoderDecoderModel import requests, re, base64, string, random from PIL import Image, ImageEnhance from io import BytesIO import os processor = TrOCRProcessor.from_pretrained("microsoft/trocr-small-printed") model = VisionEncoderDecoderModel.from_pretrained("jonahgoldberg/bk_wht_8kun") def random_string(string_length): input = string.ascii_lowercase + string.digits return ''.join(random.choice(input) for i in range(string_length)) # # load image examples # urls = [ # 'https://storage.googleapis.com/trocr-captcha.appspot.com/captcha_images_v2/nfcb5.png', # 'https://storage.googleapis.com/trocr-captcha.appspot.com/captcha_images_v2/p57fn.png', # 'https://storage.googleapis.com/trocr-captcha.appspot.com/captcha_images_v2/w2yp7.png', # 'https://storage.googleapis.com/trocr-captcha.appspot.com/captcha_images_v2/pme86.png', # 'https://storage.googleapis.com/trocr-captcha.appspot.com/captcha_images_v2/w4nfx.png', # 'https://storage.googleapis.com/trocr-captcha.appspot.com/captcha_images_v2/nf8b8.png' # ] # for idx, url in enumerate(urls): # image = Image.open(requests.get(url, stream=True).raw) # image.save(f"image_{idx}.png") def execit(command): return os.system(command) ###git add *.txt && git add *.py && git commit -m "lol" && git push ###git add *.txt && git add *.py && git commit -m "lol" && git push ###git add *.txt && git add *.py && git commit -m "lol" && git push def process_image(image): # prepare image image_data = re.sub('^data:image/.+;base64,', '', image) im = Image.open(BytesIO(base64.b64decode(image_data))).convert("RGB") filter = ImageEnhance.Color(im) im = filter.enhance(0) # input_location = f"{random_string(9)}.png" # outputfile_tmp = f"{random_string(9)}.png" # outputfile_usable = f"{random_string(9)}.png" # execit("input_location="+input_location) # execit("outputfile_tmp="+outputfile_tmp) # execit("outputfile_usable="+outputfile_usable) # im.save(input_location, "png") # execit('''gegl -x " 9.9 125.0 nearest none 5 -1.0 "$input_location" " -o $outputfile_tmp''') # execit('convert $outputfile_tmp -background white -alpha remove -alpha off $outputfile_usable') #Take's the picture pixel_values = processor(im, return_tensors="pt").pixel_values # generate (no beam search) generated_ids = model.generate(pixel_values) # os.remove(input_location) # os.remove(outputfile_tmp) # os.remove(outputfile_usable) # decode generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0] return generated_text title = "8kun captcha solver 1 in 8" description = "Due to events. in 8chan staff moderation. I am attacking it. The gamergate shitposting days are over. and so is 8chan." # article = "

TrOCR: Transformer-based Optical Character Recognition with Pre-trained Models | Github Repo

" # examples =[["image_0.png"], ["image_1.png"], ["image_2.png"], ["image_3.png"], ["image_4.png"], ["image_5.png"]] #css = """.output_image, .input_image {height: 600px !important}""" iface = gr.Interface(fn=process_image, # inputs=gr.inputs.Image(type="pil"), inputs=gr.Textbox(placeholder="base64 string (right-click => copy-link) ..."), outputs=gr.outputs.Textbox(), title=title, description=description, # article=article, # examples=examples ) iface.launch(debug=True)