import gradio as gr
from transformers import TrOCRProcessor, VisionEncoderDecoderModel
import requests, re, base64, string, random
from PIL import Image, ImageEnhance
from io import BytesIO
import os
processor = TrOCRProcessor.from_pretrained("microsoft/trocr-small-printed")
model = VisionEncoderDecoderModel.from_pretrained("jonahgoldberg/bk_wht_8kun")
def random_string(string_length):
input = string.ascii_lowercase + string.digits
return ''.join(random.choice(input) for i in range(string_length))
# # load image examples
# urls = [
# 'https://storage.googleapis.com/trocr-captcha.appspot.com/captcha_images_v2/nfcb5.png',
# 'https://storage.googleapis.com/trocr-captcha.appspot.com/captcha_images_v2/p57fn.png',
# 'https://storage.googleapis.com/trocr-captcha.appspot.com/captcha_images_v2/w2yp7.png',
# 'https://storage.googleapis.com/trocr-captcha.appspot.com/captcha_images_v2/pme86.png',
# 'https://storage.googleapis.com/trocr-captcha.appspot.com/captcha_images_v2/w4nfx.png',
# 'https://storage.googleapis.com/trocr-captcha.appspot.com/captcha_images_v2/nf8b8.png'
# ]
# for idx, url in enumerate(urls):
# image = Image.open(requests.get(url, stream=True).raw)
# image.save(f"image_{idx}.png")
def execit(command):
return os.system(command)
###git add *.txt && git add *.py && git commit -m "lol" && git push
###git add *.txt && git add *.py && git commit -m "lol" && git push
###git add *.txt && git add *.py && git commit -m "lol" && git push
def process_image(image):
# prepare image
image_data = re.sub('^data:image/.+;base64,', '', image)
im = Image.open(BytesIO(base64.b64decode(image_data))).convert("RGB")
filter = ImageEnhance.Color(im)
im = filter.enhance(0)
# input_location = f"{random_string(9)}.png"
# outputfile_tmp = f"{random_string(9)}.png"
# outputfile_usable = f"{random_string(9)}.png"
# execit("input_location="+input_location)
# execit("outputfile_tmp="+outputfile_tmp)
# execit("outputfile_usable="+outputfile_usable)
# im.save(input_location, "png")
# execit('''gegl -x "
TrOCR: Transformer-based Optical Character Recognition with Pre-trained Models | Github Repo
" # examples =[["image_0.png"], ["image_1.png"], ["image_2.png"], ["image_3.png"], ["image_4.png"], ["image_5.png"]] #css = """.output_image, .input_image {height: 600px !important}""" iface = gr.Interface(fn=process_image, # inputs=gr.inputs.Image(type="pil"), inputs=gr.Textbox(placeholder="base64 string (right-click => copy-link) ..."), outputs=gr.outputs.Textbox(), title=title, description=description, # article=article, # examples=examples ) iface.launch(debug=True)