Spaces:
Runtime error
Runtime error
File size: 2,254 Bytes
2063044 dd738af b9578f7 dd738af b9578f7 2063044 a2ff068 2063044 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 |
from langchain.text_splitter import CharacterTextSplitter
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.vectorstores import Chroma
from langchain import HuggingFacePipeline
from langchain.chains import RetrievalQA
from transformers import AutoTokenizer
import pickle
import os
import shutil
from langchain.document_loaders import BSHTMLLoader, DirectoryLoader
!git clone https://github.com/TheMITTech/shakespeare
from glob import glob
files = glob("./shakespeare/**/*.html")
os.mkdir('./data')
destination_folder = './data/'
for html_file in files:
shutil.move(html_file, destination_folder + html_file.split("/"[-1]))
bshtml_dir_loader = DirectoryLoader('./data/', loader_cls = BSHTMLLoader)
data = bshtml_dir_loader.load()
with open("shakespeare.pkl", "wb") as fp:
pickle.dump(data, fp)
with open('shakespeare.pkl', 'rb') as fp:
data = pickle.load(fp)
bloomz_tokenizer = AutoTokenizer.from_pretrained('bigscience/bloomz-1b7')
text_splitter = CharacterTextSplitter.from_huggingface_tokenizer(bloomz_tokenizer, chunk_size=100, chunk_overlap=0, separator='\n')
documents = text_splitter.split_documents(data)
embeddings = HuggingFaceEmbeddings()
persist_directory = "vector_db"
vectordb = Chroma.from_documents(documents=documents, embedding=embeddings, persist_directory=persist_directory)
vectordb.persist()
vectordb = None
vectordb_persist = Chroma(persist_directory=persist_directory, embedding_function=embeddings)
llm = HuggingFacePipeline.from_model_id(
model_id="bigscience/bloomz-1b7",
task="text-generation",
model_kwargs={"temperature" : 0, "max_length" : 500})
doc_retriever = vectordb_persist.as_retriever()
shakespeare_qa = RetrievalQA.from_chain_type(llm=llm, chain_type="stuff", retriever=doc_retriever)
def make_inference(query):
inference = shakespeare_qa.run(query)
return inference
if __name__ == "__main__":
# make a gradio interface
import gradio as gr
gr.Interface(
make_inference,
gr.inputs.Textbox(lines=2, label="Query"),
gr.outputs.Textbox(label="Response"),
title="Ask_Shakespeare",
description="️building_w_llms_qa_Shakespeare allows you to inquire about the Shakespeare's plays.",
).launch() |