Spaces:
Runtime error
Runtime error
import torch | |
from peft import PeftModel, PeftConfig | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
peft_model_id = "gkrishnan/Resume_Parsing_Model" | |
config = PeftConfig.from_pretrained(peft_model_id) | |
base_model = AutoModelForCausalLM.from_pretrained( | |
config.base_model_name_or_path, | |
return_dict=True, | |
load_in_8bit=False, | |
device_map="auto", | |
) | |
tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path) | |
# Load the Lora model | |
model = PeftModel.from_pretrained(base_model, peft_model_id) | |
def make_inference(resume): | |
batch = tokenizer(f"Write a summary based off this resume.\n\n### Resume:\n{resume}", return_tensors='pt') | |
with torch.cuda.amp.autocast(): | |
output_tokens = model.generate(**batch, max_new_tokens=200) | |
return tokenizer.decode(output_tokens[0], skip_special_tokens=True) | |
if __name__ == "__main__": | |
import gradio as gr | |
gr.Interface( | |
make_inference, | |
[ | |
gr.inputs.Textbox(lines=2, label="Resume"), | |
], | |
gr.outputs.Textbox(label="Summarized Resume"), | |
title="Resume Summary Generator", | |
description="This generates a summary from a Resume", | |
).launch() | |