Spaces:
Running
Running
inoki-giskard
commited on
Commit
•
3573a39
1
Parent(s):
970a44b
Format with black and fix import
Browse files- app.py +5 -6
- app_leaderboard.py +68 -33
- app_legacy.py +344 -159
- app_text_classification.py +105 -60
- fetch_utils.py +11 -4
- io_utils.py +22 -9
- mlflow_test.py +20 -0
- run_jobs.py +10 -5
- text_classification.py +83 -42
- text_classification_ui_helpers.py +113 -48
- validate_queue.py +24 -0
- wordings.py +8 -8
app.py
CHANGED
@@ -1,10 +1,11 @@
|
|
|
|
|
|
1 |
|
2 |
import gradio as gr
|
3 |
-
|
4 |
-
from app_text_classification import get_demo as get_demo_text_classification
|
5 |
from app_leaderboard import get_demo as get_demo_leaderboard
|
|
|
6 |
from run_jobs import start_process_run_job, stop_thread
|
7 |
-
import threading
|
8 |
|
9 |
if threading.current_thread() is not threading.main_thread():
|
10 |
t = threading.current_thread()
|
@@ -14,7 +15,7 @@ try:
|
|
14 |
get_demo_text_classification(demo)
|
15 |
with gr.Tab("Leaderboard"):
|
16 |
get_demo_leaderboard()
|
17 |
-
|
18 |
start_process_run_job()
|
19 |
|
20 |
demo.queue(max_size=100)
|
@@ -24,5 +25,3 @@ try:
|
|
24 |
except Exception:
|
25 |
print("stop background thread")
|
26 |
stop_thread()
|
27 |
-
|
28 |
-
|
|
|
1 |
+
import atexit
|
2 |
+
import threading
|
3 |
|
4 |
import gradio as gr
|
5 |
+
|
|
|
6 |
from app_leaderboard import get_demo as get_demo_leaderboard
|
7 |
+
from app_text_classification import get_demo as get_demo_text_classification
|
8 |
from run_jobs import start_process_run_job, stop_thread
|
|
|
9 |
|
10 |
if threading.current_thread() is not threading.main_thread():
|
11 |
t = threading.current_thread()
|
|
|
15 |
get_demo_text_classification(demo)
|
16 |
with gr.Tab("Leaderboard"):
|
17 |
get_demo_leaderboard()
|
18 |
+
|
19 |
start_process_run_job()
|
20 |
|
21 |
demo.queue(max_size=100)
|
|
|
25 |
except Exception:
|
26 |
print("stop background thread")
|
27 |
stop_thread()
|
|
|
|
app_leaderboard.py
CHANGED
@@ -1,8 +1,11 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
import datasets
|
3 |
import logging
|
|
|
|
|
|
|
|
|
4 |
from fetch_utils import check_dataset_and_get_config, check_dataset_and_get_split
|
5 |
|
|
|
6 |
def get_records_from_dataset_repo(dataset_id):
|
7 |
dataset_config = check_dataset_and_get_config(dataset_id)
|
8 |
|
@@ -15,83 +18,115 @@ def get_records_from_dataset_repo(dataset_id):
|
|
15 |
df = ds.to_pandas()
|
16 |
return df
|
17 |
except Exception as e:
|
18 |
-
logging.warning(
|
|
|
|
|
19 |
return None
|
20 |
|
|
|
21 |
def get_model_ids(ds):
|
22 |
logging.info(f"Dataset {ds} column names: {ds['model_id']}")
|
23 |
-
models = ds[
|
24 |
# return unique elements in the list model_ids
|
25 |
model_ids = list(set(models))
|
26 |
return model_ids
|
27 |
|
|
|
28 |
def get_dataset_ids(ds):
|
29 |
logging.info(f"Dataset {ds} column names: {ds['dataset_id']}")
|
30 |
-
datasets = ds[
|
31 |
dataset_ids = list(set(datasets))
|
32 |
return dataset_ids
|
33 |
|
|
|
34 |
def get_types(ds):
|
35 |
# set types for each column
|
36 |
types = [str(t) for t in ds.dtypes.to_list()]
|
37 |
-
types = [t.replace(
|
38 |
-
types = [t.replace(
|
39 |
-
types = [t.replace(
|
40 |
return types
|
41 |
|
|
|
42 |
def get_display_df(df):
|
43 |
# style all elements in the model_id column
|
44 |
display_df = df.copy()
|
45 |
columns = display_df.columns.tolist()
|
46 |
-
if
|
47 |
-
display_df[
|
|
|
|
|
48 |
# style all elements in the dataset_id column
|
49 |
-
if
|
50 |
-
display_df[
|
|
|
|
|
51 |
# style all elements in the report_link column
|
52 |
-
if
|
53 |
-
display_df[
|
|
|
|
|
54 |
return display_df
|
55 |
|
|
|
56 |
def get_demo():
|
57 |
-
records = get_records_from_dataset_repo(
|
58 |
|
59 |
model_ids = get_model_ids(records)
|
60 |
dataset_ids = get_dataset_ids(records)
|
61 |
|
62 |
column_names = records.columns.tolist()
|
63 |
-
default_columns = [
|
64 |
-
default_df = records[default_columns]
|
65 |
types = get_types(default_df)
|
66 |
-
display_df = get_display_df(default_df)
|
67 |
|
68 |
with gr.Row():
|
69 |
-
task_select = gr.Dropdown(
|
70 |
-
|
71 |
-
|
72 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
with gr.Row():
|
74 |
-
columns_select = gr.CheckboxGroup(
|
|
|
|
|
|
|
|
|
|
|
75 |
|
76 |
with gr.Row():
|
77 |
leaderboard_df = gr.DataFrame(display_df, datatype=types, interactive=False)
|
78 |
-
|
79 |
-
@gr.on(
|
80 |
-
|
81 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
def filter_table(model_id, dataset_id, columns, task):
|
83 |
# filter the table based on task
|
84 |
-
df = records[(records[
|
85 |
# filter the table based on the model_id and dataset_id
|
86 |
if model_id:
|
87 |
-
df = records[(records[
|
88 |
if dataset_id:
|
89 |
-
df = records[(records[
|
90 |
|
91 |
# filter the table based on the columns
|
92 |
df = df[columns]
|
93 |
types = get_types(df)
|
94 |
display_df = get_display_df(df)
|
95 |
-
return (
|
96 |
-
gr.update(value=display_df, datatype=types, interactive=False)
|
97 |
-
)
|
|
|
|
|
|
|
1 |
import logging
|
2 |
+
|
3 |
+
import datasets
|
4 |
+
import gradio as gr
|
5 |
+
|
6 |
from fetch_utils import check_dataset_and_get_config, check_dataset_and_get_split
|
7 |
|
8 |
+
|
9 |
def get_records_from_dataset_repo(dataset_id):
|
10 |
dataset_config = check_dataset_and_get_config(dataset_id)
|
11 |
|
|
|
18 |
df = ds.to_pandas()
|
19 |
return df
|
20 |
except Exception as e:
|
21 |
+
logging.warning(
|
22 |
+
f"Failed to load dataset {dataset_id} with config {dataset_config}: {e}"
|
23 |
+
)
|
24 |
return None
|
25 |
|
26 |
+
|
27 |
def get_model_ids(ds):
|
28 |
logging.info(f"Dataset {ds} column names: {ds['model_id']}")
|
29 |
+
models = ds["model_id"].tolist()
|
30 |
# return unique elements in the list model_ids
|
31 |
model_ids = list(set(models))
|
32 |
return model_ids
|
33 |
|
34 |
+
|
35 |
def get_dataset_ids(ds):
|
36 |
logging.info(f"Dataset {ds} column names: {ds['dataset_id']}")
|
37 |
+
datasets = ds["dataset_id"].tolist()
|
38 |
dataset_ids = list(set(datasets))
|
39 |
return dataset_ids
|
40 |
|
41 |
+
|
42 |
def get_types(ds):
|
43 |
# set types for each column
|
44 |
types = [str(t) for t in ds.dtypes.to_list()]
|
45 |
+
types = [t.replace("object", "markdown") for t in types]
|
46 |
+
types = [t.replace("float64", "number") for t in types]
|
47 |
+
types = [t.replace("int64", "number") for t in types]
|
48 |
return types
|
49 |
|
50 |
+
|
51 |
def get_display_df(df):
|
52 |
# style all elements in the model_id column
|
53 |
display_df = df.copy()
|
54 |
columns = display_df.columns.tolist()
|
55 |
+
if "model_id" in columns:
|
56 |
+
display_df["model_id"] = display_df["model_id"].apply(
|
57 |
+
lambda x: f'<p href="https://huggingface.co/{x}" style="color:blue">🔗{x}</p>
|
58 |
+
')
|
59 |
# style all elements in the dataset_id column
|
60 |
+
if "dataset_id" in columns:
|
61 |
+
display_df["dataset_id"] = display_df["dataset_id"].apply(
|
62 |
+
lambda x: f'<p href="https://huggingface.co/datasets/{x}" style="color:blue">🔗{x}</p>
|
63 |
+
')
|
64 |
# style all elements in the report_link column
|
65 |
+
if "report_link" in columns:
|
66 |
+
display_df["report_link"] = display_df["report_link"].apply(
|
67 |
+
lambda x: f'<p href="{x}" style="color:blue">🔗{x}</p>'
|
68 |
+
)
|
69 |
return display_df
|
70 |
|
71 |
+
|
72 |
def get_demo():
|
73 |
+
records = get_records_from_dataset_repo("ZeroCommand/test-giskard-report")
|
74 |
|
75 |
model_ids = get_model_ids(records)
|
76 |
dataset_ids = get_dataset_ids(records)
|
77 |
|
78 |
column_names = records.columns.tolist()
|
79 |
+
default_columns = ["model_id", "dataset_id", "total_issues", "report_link"]
|
80 |
+
default_df = records[default_columns] # extract columns selected
|
81 |
types = get_types(default_df)
|
82 |
+
display_df = get_display_df(default_df) # the styled dataframe to display
|
83 |
|
84 |
with gr.Row():
|
85 |
+
task_select = gr.Dropdown(
|
86 |
+
label="Task",
|
87 |
+
choices=["text_classification", "tabular"],
|
88 |
+
value="text_classification",
|
89 |
+
interactive=True,
|
90 |
+
)
|
91 |
+
model_select = gr.Dropdown(
|
92 |
+
label="Model id", choices=model_ids, interactive=True
|
93 |
+
)
|
94 |
+
dataset_select = gr.Dropdown(
|
95 |
+
label="Dataset id", choices=dataset_ids, interactive=True
|
96 |
+
)
|
97 |
+
|
98 |
with gr.Row():
|
99 |
+
columns_select = gr.CheckboxGroup(
|
100 |
+
label="Show columns",
|
101 |
+
choices=column_names,
|
102 |
+
value=default_columns,
|
103 |
+
interactive=True,
|
104 |
+
)
|
105 |
|
106 |
with gr.Row():
|
107 |
leaderboard_df = gr.DataFrame(display_df, datatype=types, interactive=False)
|
108 |
+
|
109 |
+
@gr.on(
|
110 |
+
triggers=[
|
111 |
+
model_select.change,
|
112 |
+
dataset_select.change,
|
113 |
+
columns_select.change,
|
114 |
+
task_select.change,
|
115 |
+
],
|
116 |
+
inputs=[model_select, dataset_select, columns_select, task_select],
|
117 |
+
outputs=[leaderboard_df],
|
118 |
+
)
|
119 |
def filter_table(model_id, dataset_id, columns, task):
|
120 |
# filter the table based on task
|
121 |
+
df = records[(records["task"] == task)]
|
122 |
# filter the table based on the model_id and dataset_id
|
123 |
if model_id:
|
124 |
+
df = records[(records["model_id"] == model_id)]
|
125 |
if dataset_id:
|
126 |
+
df = records[(records["dataset_id"] == dataset_id)]
|
127 |
|
128 |
# filter the table based on the columns
|
129 |
df = df[columns]
|
130 |
types = get_types(df)
|
131 |
display_df = get_display_df(df)
|
132 |
+
return gr.update(value=display_df, datatype=types, interactive=False)
|
|
|
|
app_legacy.py
CHANGED
@@ -1,22 +1,31 @@
|
|
1 |
-
import
|
2 |
-
import
|
3 |
-
import huggingface_hub
|
4 |
import os
|
5 |
-
import time
|
6 |
import subprocess
|
7 |
-
import
|
8 |
-
|
9 |
-
import json
|
10 |
|
|
|
|
|
|
|
11 |
from transformers.pipelines import TextClassificationPipeline
|
12 |
|
13 |
-
from
|
14 |
-
|
15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
-
HF_REPO_ID = 'HF_REPO_ID'
|
18 |
-
HF_SPACE_ID = 'SPACE_ID'
|
19 |
-
HF_WRITE_TOKEN = 'HF_WRITE_TOKEN'
|
20 |
|
21 |
def check_model(model_id):
|
22 |
try:
|
@@ -26,6 +35,7 @@ def check_model(model_id):
|
|
26 |
|
27 |
try:
|
28 |
from transformers import pipeline
|
|
|
29 |
ppl = pipeline(task=task, model=model_id)
|
30 |
|
31 |
return model_id, ppl
|
@@ -55,55 +65,70 @@ def check_dataset(dataset_id, dataset_config="default", dataset_split="test"):
|
|
55 |
return dataset_id, None, None
|
56 |
return dataset_id, dataset_config, dataset_split
|
57 |
|
58 |
-
|
|
|
|
|
|
|
59 |
# Validate model
|
60 |
if m_id is None:
|
61 |
-
gr.Warning(
|
|
|
|
|
62 |
return (
|
63 |
-
gr.update(interactive=False),
|
64 |
-
gr.update(visible=True),
|
65 |
-
gr.update(visible=False),
|
66 |
-
gr.update(visible=False),
|
67 |
-
gr.update(visible=False),
|
68 |
-
gr.update(visible=False),
|
69 |
-
gr.update(visible=False),
|
70 |
)
|
71 |
if isinstance(ppl, Exception):
|
72 |
gr.Warning(f'Failed to load model": {ppl}')
|
73 |
return (
|
74 |
-
gr.update(interactive=False),
|
75 |
-
gr.update(visible=True),
|
76 |
-
gr.update(visible=False),
|
77 |
-
gr.update(visible=False),
|
78 |
-
gr.update(visible=False),
|
79 |
-
gr.update(visible=False),
|
80 |
-
gr.update(visible=False),
|
81 |
)
|
82 |
|
83 |
# Validate dataset
|
84 |
-
d_id, config, split = check_dataset(
|
|
|
|
|
|
|
|
|
85 |
|
86 |
dataset_ok = False
|
87 |
if d_id is None:
|
88 |
-
gr.Warning(
|
|
|
|
|
89 |
elif isinstance(config, list):
|
90 |
-
gr.Warning(
|
|
|
|
|
91 |
config = gr.update(choices=config, value=config[0])
|
92 |
elif isinstance(split, list):
|
93 |
-
gr.Warning(
|
|
|
|
|
94 |
split = gr.update(choices=split, value=split[0])
|
95 |
else:
|
96 |
dataset_ok = True
|
97 |
|
98 |
if not dataset_ok:
|
99 |
return (
|
100 |
-
gr.update(interactive=False),
|
101 |
-
gr.update(visible=True),
|
102 |
-
gr.update(visible=False),
|
103 |
-
gr.update(visible=False),
|
104 |
-
gr.update(visible=False),
|
105 |
-
gr.update(visible=False),
|
106 |
-
gr.update(visible=False),
|
107 |
)
|
108 |
|
109 |
# TODO: Validate column mapping by running once
|
@@ -115,55 +140,94 @@ def try_validate(m_id, ppl, dataset_id, dataset_config, dataset_split, column_ma
|
|
115 |
except Exception:
|
116 |
column_mapping = {}
|
117 |
|
118 |
-
|
119 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
120 |
|
121 |
column_mapping = json.dumps(column_mapping, indent=2)
|
122 |
|
123 |
if prediction_result is None and id2label_df is not None:
|
124 |
-
gr.Warning(
|
|
|
|
|
125 |
return (
|
126 |
-
gr.update(interactive=False),
|
127 |
-
gr.update(visible=False),
|
128 |
-
gr.update(CONFIRM_MAPPING_DETAILS_MD, visible=True),
|
129 |
-
gr.update(
|
130 |
-
|
131 |
-
|
132 |
-
gr.update(
|
|
|
|
|
|
|
|
|
|
|
|
|
133 |
)
|
134 |
elif id2label_df is None:
|
135 |
-
gr.Warning(
|
|
|
|
|
136 |
return (
|
137 |
-
gr.update(interactive=False),
|
138 |
-
gr.update(visible=False),
|
139 |
-
gr.update(CONFIRM_MAPPING_DETAILS_MD, visible=True),
|
140 |
-
gr.update(
|
141 |
-
|
142 |
-
|
143 |
-
gr.update(
|
|
|
|
|
|
|
|
|
144 |
)
|
145 |
|
146 |
-
gr.Info(
|
|
|
|
|
147 |
|
148 |
return (
|
149 |
-
gr.update(interactive=True),
|
150 |
-
gr.update(visible=False),
|
151 |
-
gr.update(CONFIRM_MAPPING_DETAILS_MD, visible=True),
|
152 |
-
gr.update(
|
153 |
-
|
154 |
-
|
155 |
-
gr.update(value=
|
|
|
|
|
|
|
|
|
|
|
|
|
156 |
)
|
157 |
|
158 |
|
159 |
-
def try_submit(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
160 |
label_mapping = {}
|
161 |
for i, label in id2label_mapping_dataframe["Model Prediction Labels"].items():
|
162 |
label_mapping.update({str(i): label})
|
163 |
-
|
164 |
feature_mapping = {}
|
165 |
for i, feature in feature_mapping_dataframe["Dataset Features"].items():
|
166 |
-
feature_mapping.update(
|
|
|
|
|
167 |
|
168 |
# TODO: Set column mapping for some dataset such as `amazon_polarity`
|
169 |
|
@@ -171,18 +235,30 @@ def try_submit(m_id, d_id, config, split, id2label_mapping_dataframe, feature_ma
|
|
171 |
command = [
|
172 |
"python",
|
173 |
"cli.py",
|
174 |
-
"--loader",
|
175 |
-
"
|
176 |
-
"--
|
177 |
-
|
178 |
-
"--
|
179 |
-
|
180 |
-
"--
|
181 |
-
|
182 |
-
"--
|
183 |
-
|
184 |
-
"--
|
185 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
186 |
]
|
187 |
|
188 |
eval_str = f"[{m_id}]<{d_id}({config}, {split} set)>"
|
@@ -196,12 +272,16 @@ def try_submit(m_id, d_id, config, split, id2label_mapping_dataframe, feature_ma
|
|
196 |
)
|
197 |
result = evaluator.wait()
|
198 |
|
199 |
-
logging.info(
|
|
|
|
|
200 |
|
201 |
-
gr.Info(
|
|
|
|
|
202 |
else:
|
203 |
gr.Info("TODO: Submit task to an endpoint")
|
204 |
-
|
205 |
return gr.update(interactive=True) # Submit button
|
206 |
|
207 |
|
@@ -224,56 +304,82 @@ def get_demo():
|
|
224 |
return gr.Dropdown(splits, value=splits[0], visible=True)
|
225 |
except Exception as e:
|
226 |
# Dataset may not exist
|
227 |
-
gr.Warning(
|
228 |
-
|
229 |
-
|
|
|
230 |
def clear_column_mapping_tables():
|
231 |
return [
|
232 |
gr.update(CONFIRM_MAPPING_DETAILS_FAIL_MD, visible=True),
|
233 |
gr.update(value=[], visible=False, interactive=True),
|
234 |
gr.update(value=[], visible=False, interactive=True),
|
235 |
]
|
236 |
-
|
237 |
-
def gate_validate_btn(
|
238 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
239 |
_, ppl = check_model(model_id=model_id)
|
240 |
|
241 |
if id2label_mapping_dataframe is not None:
|
242 |
-
labels = convert_column_mapping_to_json(
|
243 |
-
|
|
|
|
|
|
|
|
|
244 |
column_mapping = json.dumps({**labels, **features}, indent=2)
|
245 |
|
246 |
if check_column_mapping_keys_validity(column_mapping, ppl) is False:
|
247 |
-
gr.Warning(
|
248 |
-
return (
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
|
|
|
|
255 |
else:
|
256 |
if model_id and dataset_id and dataset_config and dataset_split:
|
257 |
-
return try_validate(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
258 |
else:
|
259 |
-
return (
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
|
|
|
|
|
|
266 |
with gr.Row():
|
267 |
gr.Markdown(CONFIRM_MAPPING_DETAILS_MD)
|
268 |
with gr.Row():
|
269 |
run_local = gr.Checkbox(value=True, label="Run in this Space")
|
270 |
-
use_inference = read_inference_type(
|
271 |
run_inference = gr.Checkbox(value=use_inference, label="Run with Inference API")
|
272 |
-
|
273 |
with gr.Row():
|
274 |
-
selected = read_scanners(
|
275 |
-
scan_config = selected + [
|
276 |
-
scanners = gr.CheckboxGroup(
|
|
|
|
|
277 |
|
278 |
with gr.Row():
|
279 |
model_id_input = gr.Textbox(
|
@@ -286,75 +392,154 @@ def get_demo():
|
|
286 |
placeholder="tweet_eval",
|
287 |
)
|
288 |
with gr.Row():
|
289 |
-
dataset_config_input = gr.Dropdown(label=
|
290 |
-
dataset_split_input = gr.Dropdown(label=
|
291 |
-
|
292 |
with gr.Row(visible=True) as loading_row:
|
293 |
-
gr.Markdown(
|
|
|
294 |
<p style="text-align: center;">
|
295 |
🚀🐢Please validate your model and dataset first...
|
296 |
</p>
|
297 |
-
|
298 |
-
|
|
|
299 |
with gr.Row(visible=False) as preview_row:
|
300 |
-
gr.Markdown(
|
|
|
301 |
<h1 style="text-align: center;">
|
302 |
Confirm Pre-processing Details
|
303 |
</h1>
|
304 |
Base on your model and dataset, we inferred this label mapping and feature mapping. <b>If the mapping is incorrect, please modify it in the table below.</b>
|
305 |
-
|
306 |
-
|
|
|
307 |
with gr.Row():
|
308 |
-
id2label_mapping_dataframe = gr.DataFrame(
|
309 |
-
|
|
|
|
|
|
|
|
|
310 |
with gr.Row():
|
311 |
-
example_input = gr.Markdown(
|
312 |
-
|
313 |
with gr.Row():
|
314 |
-
example_labels = gr.Label(label=
|
315 |
-
|
316 |
run_btn = gr.Button(
|
317 |
"Get Evaluation Result",
|
318 |
variant="primary",
|
319 |
interactive=False,
|
320 |
size="lg",
|
321 |
)
|
322 |
-
|
323 |
-
model_id_input.blur(clear_column_mapping_tables, outputs=[id2label_mapping_dataframe, feature_mapping_dataframe])
|
324 |
|
|
|
|
|
|
|
|
|
325 |
|
326 |
-
dataset_id_input.blur(
|
327 |
-
|
|
|
|
|
|
|
|
|
328 |
|
329 |
dataset_config_input.change(
|
330 |
-
check_dataset_and_get_split,
|
331 |
-
inputs=[dataset_config_input, dataset_id_input],
|
332 |
-
outputs=[dataset_split_input]
|
333 |
-
|
334 |
-
|
335 |
-
|
336 |
-
|
|
|
|
|
|
|
|
|
337 |
# outputs=[run_btn, loading_row, preview_row, example_input, example_labels, id2label_mapping_dataframe, feature_mapping_dataframe])
|
338 |
-
# dataset_id_input.blur(gate_validate_btn,
|
339 |
-
# inputs=[model_id_input, dataset_id_input, dataset_config_input, dataset_split_input],
|
340 |
-
|
341 |
-
dataset_config_input.change(
|
342 |
-
|
343 |
-
|
344 |
-
|
345 |
-
|
346 |
-
|
347 |
-
|
348 |
-
|
349 |
-
|
350 |
-
|
351 |
-
|
352 |
-
|
353 |
-
|
354 |
-
|
355 |
-
|
356 |
-
|
|
|
357 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
358 |
|
359 |
run_btn.click(
|
360 |
try_submit,
|
@@ -370,4 +555,4 @@ def get_demo():
|
|
370 |
outputs=[
|
371 |
run_btn,
|
372 |
],
|
373 |
-
)
|
|
|
1 |
+
import json
|
2 |
+
import logging
|
|
|
3 |
import os
|
|
|
4 |
import subprocess
|
5 |
+
import time
|
|
|
|
|
6 |
|
7 |
+
import datasets
|
8 |
+
import gradio as gr
|
9 |
+
import huggingface_hub
|
10 |
from transformers.pipelines import TextClassificationPipeline
|
11 |
|
12 |
+
from io_utils import (
|
13 |
+
convert_column_mapping_to_json,
|
14 |
+
read_inference_type,
|
15 |
+
read_scanners,
|
16 |
+
write_inference_type,
|
17 |
+
write_scanners,
|
18 |
+
)
|
19 |
+
from text_classification import (
|
20 |
+
check_column_mapping_keys_validity,
|
21 |
+
text_classification_fix_column_mapping,
|
22 |
+
)
|
23 |
+
from wordings import CONFIRM_MAPPING_DETAILS_FAIL_MD, CONFIRM_MAPPING_DETAILS_MD
|
24 |
+
|
25 |
+
HF_REPO_ID = "HF_REPO_ID"
|
26 |
+
HF_SPACE_ID = "SPACE_ID"
|
27 |
+
HF_WRITE_TOKEN = "HF_WRITE_TOKEN"
|
28 |
|
|
|
|
|
|
|
29 |
|
30 |
def check_model(model_id):
|
31 |
try:
|
|
|
35 |
|
36 |
try:
|
37 |
from transformers import pipeline
|
38 |
+
|
39 |
ppl = pipeline(task=task, model=model_id)
|
40 |
|
41 |
return model_id, ppl
|
|
|
65 |
return dataset_id, None, None
|
66 |
return dataset_id, dataset_config, dataset_split
|
67 |
|
68 |
+
|
69 |
+
def try_validate(
|
70 |
+
m_id, ppl, dataset_id, dataset_config, dataset_split, column_mapping="{}"
|
71 |
+
):
|
72 |
# Validate model
|
73 |
if m_id is None:
|
74 |
+
gr.Warning(
|
75 |
+
"Model is not accessible. Please set your HF_TOKEN if it is a private model."
|
76 |
+
)
|
77 |
return (
|
78 |
+
gr.update(interactive=False), # Submit button
|
79 |
+
gr.update(visible=True), # Loading row
|
80 |
+
gr.update(visible=False), # Preview row
|
81 |
+
gr.update(visible=False), # Model prediction input
|
82 |
+
gr.update(visible=False), # Model prediction preview
|
83 |
+
gr.update(visible=False), # Label mapping preview
|
84 |
+
gr.update(visible=False), # feature mapping preview
|
85 |
)
|
86 |
if isinstance(ppl, Exception):
|
87 |
gr.Warning(f'Failed to load model": {ppl}')
|
88 |
return (
|
89 |
+
gr.update(interactive=False), # Submit button
|
90 |
+
gr.update(visible=True), # Loading row
|
91 |
+
gr.update(visible=False), # Preview row
|
92 |
+
gr.update(visible=False), # Model prediction input
|
93 |
+
gr.update(visible=False), # Model prediction preview
|
94 |
+
gr.update(visible=False), # Label mapping preview
|
95 |
+
gr.update(visible=False), # feature mapping preview
|
96 |
)
|
97 |
|
98 |
# Validate dataset
|
99 |
+
d_id, config, split = check_dataset(
|
100 |
+
dataset_id=dataset_id,
|
101 |
+
dataset_config=dataset_config,
|
102 |
+
dataset_split=dataset_split,
|
103 |
+
)
|
104 |
|
105 |
dataset_ok = False
|
106 |
if d_id is None:
|
107 |
+
gr.Warning(
|
108 |
+
f'Dataset "{dataset_id}" is not accessible. Please set your HF_TOKEN if it is a private dataset.'
|
109 |
+
)
|
110 |
elif isinstance(config, list):
|
111 |
+
gr.Warning(
|
112 |
+
f'Dataset "{dataset_id}" does not have "{dataset_config}" config. Please choose a valid config.'
|
113 |
+
)
|
114 |
config = gr.update(choices=config, value=config[0])
|
115 |
elif isinstance(split, list):
|
116 |
+
gr.Warning(
|
117 |
+
f'Dataset "{dataset_id}" does not have "{dataset_split}" split. Please choose a valid split.'
|
118 |
+
)
|
119 |
split = gr.update(choices=split, value=split[0])
|
120 |
else:
|
121 |
dataset_ok = True
|
122 |
|
123 |
if not dataset_ok:
|
124 |
return (
|
125 |
+
gr.update(interactive=False), # Submit button
|
126 |
+
gr.update(visible=True), # Loading row
|
127 |
+
gr.update(visible=False), # Preview row
|
128 |
+
gr.update(visible=False), # Model prediction input
|
129 |
+
gr.update(visible=False), # Model prediction preview
|
130 |
+
gr.update(visible=False), # Label mapping preview
|
131 |
+
gr.update(visible=False), # feature mapping preview
|
132 |
)
|
133 |
|
134 |
# TODO: Validate column mapping by running once
|
|
|
140 |
except Exception:
|
141 |
column_mapping = {}
|
142 |
|
143 |
+
(
|
144 |
+
column_mapping,
|
145 |
+
prediction_input,
|
146 |
+
prediction_result,
|
147 |
+
id2label_df,
|
148 |
+
feature_df,
|
149 |
+
) = text_classification_fix_column_mapping(
|
150 |
+
column_mapping, ppl, d_id, config, split
|
151 |
+
)
|
152 |
|
153 |
column_mapping = json.dumps(column_mapping, indent=2)
|
154 |
|
155 |
if prediction_result is None and id2label_df is not None:
|
156 |
+
gr.Warning(
|
157 |
+
'The model failed to predict with the first row in the dataset. Please provide feature mappings in "Advance" settings.'
|
158 |
+
)
|
159 |
return (
|
160 |
+
gr.update(interactive=False), # Submit button
|
161 |
+
gr.update(visible=False), # Loading row
|
162 |
+
gr.update(CONFIRM_MAPPING_DETAILS_MD, visible=True), # Preview row
|
163 |
+
gr.update(
|
164 |
+
value=f"**Sample Input**: {prediction_input}", visible=True
|
165 |
+
), # Model prediction input
|
166 |
+
gr.update(visible=False), # Model prediction preview
|
167 |
+
gr.update(
|
168 |
+
value=id2label_df, visible=True, interactive=True
|
169 |
+
), # Label mapping preview
|
170 |
+
gr.update(
|
171 |
+
value=feature_df, visible=True, interactive=True
|
172 |
+
), # feature mapping preview
|
173 |
)
|
174 |
elif id2label_df is None:
|
175 |
+
gr.Warning(
|
176 |
+
'The prediction result does not conform the labels in the dataset. Please provide label mappings in "Advance" settings.'
|
177 |
+
)
|
178 |
return (
|
179 |
+
gr.update(interactive=False), # Submit button
|
180 |
+
gr.update(visible=False), # Loading row
|
181 |
+
gr.update(CONFIRM_MAPPING_DETAILS_MD, visible=True), # Preview row
|
182 |
+
gr.update(
|
183 |
+
value=f"**Sample Input**: {prediction_input}", visible=True
|
184 |
+
), # Model prediction input
|
185 |
+
gr.update(
|
186 |
+
value=prediction_result, visible=True
|
187 |
+
), # Model prediction preview
|
188 |
+
gr.update(visible=True, interactive=True), # Label mapping preview
|
189 |
+
gr.update(visible=True, interactive=True), # feature mapping preview
|
190 |
)
|
191 |
|
192 |
+
gr.Info(
|
193 |
+
"Model and dataset validations passed. Your can submit the evaluation task."
|
194 |
+
)
|
195 |
|
196 |
return (
|
197 |
+
gr.update(interactive=True), # Submit button
|
198 |
+
gr.update(visible=False), # Loading row
|
199 |
+
gr.update(CONFIRM_MAPPING_DETAILS_MD, visible=True), # Preview row
|
200 |
+
gr.update(
|
201 |
+
value=f"**Sample Input**: {prediction_input}", visible=True
|
202 |
+
), # Model prediction input
|
203 |
+
gr.update(value=prediction_result, visible=True), # Model prediction preview
|
204 |
+
gr.update(
|
205 |
+
value=id2label_df, visible=True, interactive=True
|
206 |
+
), # Label mapping preview
|
207 |
+
gr.update(
|
208 |
+
value=feature_df, visible=True, interactive=True
|
209 |
+
), # feature mapping preview
|
210 |
)
|
211 |
|
212 |
|
213 |
+
def try_submit(
|
214 |
+
m_id,
|
215 |
+
d_id,
|
216 |
+
config,
|
217 |
+
split,
|
218 |
+
id2label_mapping_dataframe,
|
219 |
+
feature_mapping_dataframe,
|
220 |
+
local,
|
221 |
+
):
|
222 |
label_mapping = {}
|
223 |
for i, label in id2label_mapping_dataframe["Model Prediction Labels"].items():
|
224 |
label_mapping.update({str(i): label})
|
225 |
+
|
226 |
feature_mapping = {}
|
227 |
for i, feature in feature_mapping_dataframe["Dataset Features"].items():
|
228 |
+
feature_mapping.update(
|
229 |
+
{feature_mapping_dataframe["Model Input Features"][i]: feature}
|
230 |
+
)
|
231 |
|
232 |
# TODO: Set column mapping for some dataset such as `amazon_polarity`
|
233 |
|
|
|
235 |
command = [
|
236 |
"python",
|
237 |
"cli.py",
|
238 |
+
"--loader",
|
239 |
+
"huggingface",
|
240 |
+
"--model",
|
241 |
+
m_id,
|
242 |
+
"--dataset",
|
243 |
+
d_id,
|
244 |
+
"--dataset_config",
|
245 |
+
config,
|
246 |
+
"--dataset_split",
|
247 |
+
split,
|
248 |
+
"--hf_token",
|
249 |
+
os.environ.get(HF_WRITE_TOKEN),
|
250 |
+
"--discussion_repo",
|
251 |
+
os.environ.get(HF_REPO_ID) or os.environ.get(HF_SPACE_ID),
|
252 |
+
"--output_format",
|
253 |
+
"markdown",
|
254 |
+
"--output_portal",
|
255 |
+
"huggingface",
|
256 |
+
"--feature_mapping",
|
257 |
+
json.dumps(feature_mapping),
|
258 |
+
"--label_mapping",
|
259 |
+
json.dumps(label_mapping),
|
260 |
+
"--scan_config",
|
261 |
+
"../config.yaml",
|
262 |
]
|
263 |
|
264 |
eval_str = f"[{m_id}]<{d_id}({config}, {split} set)>"
|
|
|
272 |
)
|
273 |
result = evaluator.wait()
|
274 |
|
275 |
+
logging.info(
|
276 |
+
f"Finished local evaluation exit code {result} on {eval_str}: {time.time() - start:.2f}s"
|
277 |
+
)
|
278 |
|
279 |
+
gr.Info(
|
280 |
+
f"Finished local evaluation exit code {result} on {eval_str}: {time.time() - start:.2f}s"
|
281 |
+
)
|
282 |
else:
|
283 |
gr.Info("TODO: Submit task to an endpoint")
|
284 |
+
|
285 |
return gr.update(interactive=True) # Submit button
|
286 |
|
287 |
|
|
|
304 |
return gr.Dropdown(splits, value=splits[0], visible=True)
|
305 |
except Exception as e:
|
306 |
# Dataset may not exist
|
307 |
+
gr.Warning(
|
308 |
+
f"Failed to load dataset {dataset_id} with config {dataset_config}: {e}"
|
309 |
+
)
|
310 |
+
|
311 |
def clear_column_mapping_tables():
|
312 |
return [
|
313 |
gr.update(CONFIRM_MAPPING_DETAILS_FAIL_MD, visible=True),
|
314 |
gr.update(value=[], visible=False, interactive=True),
|
315 |
gr.update(value=[], visible=False, interactive=True),
|
316 |
]
|
317 |
+
|
318 |
+
def gate_validate_btn(
|
319 |
+
model_id,
|
320 |
+
dataset_id,
|
321 |
+
dataset_config,
|
322 |
+
dataset_split,
|
323 |
+
id2label_mapping_dataframe=None,
|
324 |
+
feature_mapping_dataframe=None,
|
325 |
+
):
|
326 |
+
column_mapping = "{}"
|
327 |
_, ppl = check_model(model_id=model_id)
|
328 |
|
329 |
if id2label_mapping_dataframe is not None:
|
330 |
+
labels = convert_column_mapping_to_json(
|
331 |
+
id2label_mapping_dataframe.value, label="data"
|
332 |
+
)
|
333 |
+
features = convert_column_mapping_to_json(
|
334 |
+
feature_mapping_dataframe.value, label="text"
|
335 |
+
)
|
336 |
column_mapping = json.dumps({**labels, **features}, indent=2)
|
337 |
|
338 |
if check_column_mapping_keys_validity(column_mapping, ppl) is False:
|
339 |
+
gr.Warning("Label mapping table has invalid contents. Please check again.")
|
340 |
+
return (
|
341 |
+
gr.update(interactive=False),
|
342 |
+
gr.update(CONFIRM_MAPPING_DETAILS_FAIL_MD, visible=True),
|
343 |
+
gr.update(),
|
344 |
+
gr.update(),
|
345 |
+
gr.update(),
|
346 |
+
gr.update(),
|
347 |
+
gr.update(),
|
348 |
+
)
|
349 |
else:
|
350 |
if model_id and dataset_id and dataset_config and dataset_split:
|
351 |
+
return try_validate(
|
352 |
+
model_id,
|
353 |
+
ppl,
|
354 |
+
dataset_id,
|
355 |
+
dataset_config,
|
356 |
+
dataset_split,
|
357 |
+
column_mapping,
|
358 |
+
)
|
359 |
else:
|
360 |
+
return (
|
361 |
+
gr.update(interactive=False),
|
362 |
+
gr.update(visible=True),
|
363 |
+
gr.update(visible=False),
|
364 |
+
gr.update(visible=False),
|
365 |
+
gr.update(visible=False),
|
366 |
+
gr.update(visible=False),
|
367 |
+
gr.update(visible=False),
|
368 |
+
)
|
369 |
+
|
370 |
with gr.Row():
|
371 |
gr.Markdown(CONFIRM_MAPPING_DETAILS_MD)
|
372 |
with gr.Row():
|
373 |
run_local = gr.Checkbox(value=True, label="Run in this Space")
|
374 |
+
use_inference = read_inference_type("./config.yaml") == "hf_inference_api"
|
375 |
run_inference = gr.Checkbox(value=use_inference, label="Run with Inference API")
|
376 |
+
|
377 |
with gr.Row():
|
378 |
+
selected = read_scanners("./config.yaml")
|
379 |
+
scan_config = selected + ["data_leakage"]
|
380 |
+
scanners = gr.CheckboxGroup(
|
381 |
+
choices=scan_config, value=selected, label="Scan Settings", visible=True
|
382 |
+
)
|
383 |
|
384 |
with gr.Row():
|
385 |
model_id_input = gr.Textbox(
|
|
|
392 |
placeholder="tweet_eval",
|
393 |
)
|
394 |
with gr.Row():
|
395 |
+
dataset_config_input = gr.Dropdown(label="Dataset Config", visible=False)
|
396 |
+
dataset_split_input = gr.Dropdown(label="Dataset Split", visible=False)
|
397 |
+
|
398 |
with gr.Row(visible=True) as loading_row:
|
399 |
+
gr.Markdown(
|
400 |
+
"""
|
401 |
<p style="text-align: center;">
|
402 |
🚀🐢Please validate your model and dataset first...
|
403 |
</p>
|
404 |
+
"""
|
405 |
+
)
|
406 |
+
|
407 |
with gr.Row(visible=False) as preview_row:
|
408 |
+
gr.Markdown(
|
409 |
+
"""
|
410 |
<h1 style="text-align: center;">
|
411 |
Confirm Pre-processing Details
|
412 |
</h1>
|
413 |
Base on your model and dataset, we inferred this label mapping and feature mapping. <b>If the mapping is incorrect, please modify it in the table below.</b>
|
414 |
+
"""
|
415 |
+
)
|
416 |
+
|
417 |
with gr.Row():
|
418 |
+
id2label_mapping_dataframe = gr.DataFrame(
|
419 |
+
label="Preview of label mapping", interactive=True, visible=False
|
420 |
+
)
|
421 |
+
feature_mapping_dataframe = gr.DataFrame(
|
422 |
+
label="Preview of feature mapping", interactive=True, visible=False
|
423 |
+
)
|
424 |
with gr.Row():
|
425 |
+
example_input = gr.Markdown("Sample Input: ", visible=False)
|
426 |
+
|
427 |
with gr.Row():
|
428 |
+
example_labels = gr.Label(label="Model Prediction Sample", visible=False)
|
429 |
+
|
430 |
run_btn = gr.Button(
|
431 |
"Get Evaluation Result",
|
432 |
variant="primary",
|
433 |
interactive=False,
|
434 |
size="lg",
|
435 |
)
|
|
|
|
|
436 |
|
437 |
+
model_id_input.blur(
|
438 |
+
clear_column_mapping_tables,
|
439 |
+
outputs=[id2label_mapping_dataframe, feature_mapping_dataframe],
|
440 |
+
)
|
441 |
|
442 |
+
dataset_id_input.blur(
|
443 |
+
check_dataset_and_get_config, dataset_id_input, dataset_config_input
|
444 |
+
)
|
445 |
+
dataset_id_input.submit(
|
446 |
+
check_dataset_and_get_config, dataset_id_input, dataset_config_input
|
447 |
+
)
|
448 |
|
449 |
dataset_config_input.change(
|
450 |
+
check_dataset_and_get_split,
|
451 |
+
inputs=[dataset_config_input, dataset_id_input],
|
452 |
+
outputs=[dataset_split_input],
|
453 |
+
)
|
454 |
+
|
455 |
+
dataset_id_input.blur(
|
456 |
+
clear_column_mapping_tables,
|
457 |
+
outputs=[id2label_mapping_dataframe, feature_mapping_dataframe],
|
458 |
+
)
|
459 |
+
# model_id_input.blur(gate_validate_btn,
|
460 |
+
# inputs=[model_id_input, dataset_id_input, dataset_config_input, dataset_split_input],
|
461 |
# outputs=[run_btn, loading_row, preview_row, example_input, example_labels, id2label_mapping_dataframe, feature_mapping_dataframe])
|
462 |
+
# dataset_id_input.blur(gate_validate_btn,
|
463 |
+
# inputs=[model_id_input, dataset_id_input, dataset_config_input, dataset_split_input],
|
464 |
+
# outputs=[run_btn, loading_row, preview_row, example_input, example_labels, id2label_mapping_dataframe, feature_mapping_dataframe])
|
465 |
+
dataset_config_input.change(
|
466 |
+
gate_validate_btn,
|
467 |
+
inputs=[
|
468 |
+
model_id_input,
|
469 |
+
dataset_id_input,
|
470 |
+
dataset_config_input,
|
471 |
+
dataset_split_input,
|
472 |
+
],
|
473 |
+
outputs=[
|
474 |
+
run_btn,
|
475 |
+
loading_row,
|
476 |
+
preview_row,
|
477 |
+
example_input,
|
478 |
+
example_labels,
|
479 |
+
id2label_mapping_dataframe,
|
480 |
+
feature_mapping_dataframe,
|
481 |
+
],
|
482 |
)
|
483 |
+
dataset_split_input.change(
|
484 |
+
gate_validate_btn,
|
485 |
+
inputs=[
|
486 |
+
model_id_input,
|
487 |
+
dataset_id_input,
|
488 |
+
dataset_config_input,
|
489 |
+
dataset_split_input,
|
490 |
+
],
|
491 |
+
outputs=[
|
492 |
+
run_btn,
|
493 |
+
loading_row,
|
494 |
+
preview_row,
|
495 |
+
example_input,
|
496 |
+
example_labels,
|
497 |
+
id2label_mapping_dataframe,
|
498 |
+
feature_mapping_dataframe,
|
499 |
+
],
|
500 |
+
)
|
501 |
+
id2label_mapping_dataframe.input(
|
502 |
+
gate_validate_btn,
|
503 |
+
inputs=[
|
504 |
+
model_id_input,
|
505 |
+
dataset_id_input,
|
506 |
+
dataset_config_input,
|
507 |
+
dataset_split_input,
|
508 |
+
id2label_mapping_dataframe,
|
509 |
+
feature_mapping_dataframe,
|
510 |
+
],
|
511 |
+
outputs=[
|
512 |
+
run_btn,
|
513 |
+
loading_row,
|
514 |
+
preview_row,
|
515 |
+
example_input,
|
516 |
+
example_labels,
|
517 |
+
id2label_mapping_dataframe,
|
518 |
+
feature_mapping_dataframe,
|
519 |
+
],
|
520 |
+
)
|
521 |
+
feature_mapping_dataframe.input(
|
522 |
+
gate_validate_btn,
|
523 |
+
inputs=[
|
524 |
+
model_id_input,
|
525 |
+
dataset_id_input,
|
526 |
+
dataset_config_input,
|
527 |
+
dataset_split_input,
|
528 |
+
id2label_mapping_dataframe,
|
529 |
+
feature_mapping_dataframe,
|
530 |
+
],
|
531 |
+
outputs=[
|
532 |
+
run_btn,
|
533 |
+
loading_row,
|
534 |
+
preview_row,
|
535 |
+
example_input,
|
536 |
+
example_labels,
|
537 |
+
id2label_mapping_dataframe,
|
538 |
+
feature_mapping_dataframe,
|
539 |
+
],
|
540 |
+
)
|
541 |
+
scanners.change(write_scanners, inputs=scanners)
|
542 |
+
run_inference.change(write_inference_type, inputs=[run_inference])
|
543 |
|
544 |
run_btn.click(
|
545 |
try_submit,
|
|
|
555 |
outputs=[
|
556 |
run_btn,
|
557 |
],
|
558 |
+
)
|
app_text_classification.py
CHANGED
@@ -1,15 +1,28 @@
|
|
1 |
import gradio as gr
|
2 |
import uuid
|
3 |
-
from io_utils import
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
from wordings import INTRODUCTION_MD, CONFIRM_MAPPING_DETAILS_MD
|
5 |
-
from text_classification_ui_helpers import
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
MAX_LABELS = 20
|
8 |
MAX_FEATURES = 20
|
9 |
|
10 |
-
EXAMPLE_MODEL_ID =
|
11 |
-
EXAMPLE_DATA_ID =
|
12 |
-
CONFIG_PATH=
|
|
|
13 |
|
14 |
def get_demo(demo):
|
15 |
with gr.Row():
|
@@ -24,18 +37,20 @@ def get_demo(demo):
|
|
24 |
label="Hugging Face Dataset id",
|
25 |
placeholder=EXAMPLE_DATA_ID + " (press enter to confirm)",
|
26 |
)
|
27 |
-
|
28 |
with gr.Row():
|
29 |
-
dataset_config_input = gr.Dropdown(label=
|
30 |
-
dataset_split_input = gr.Dropdown(label=
|
31 |
-
|
32 |
with gr.Row():
|
33 |
-
example_input = gr.Markdown(
|
34 |
with gr.Row():
|
35 |
-
example_prediction = gr.Label(label=
|
36 |
-
|
37 |
with gr.Row():
|
38 |
-
with gr.Accordion(
|
|
|
|
|
39 |
with gr.Row():
|
40 |
gr.Markdown(CONFIRM_MAPPING_DETAILS_MD)
|
41 |
column_mappings = []
|
@@ -43,22 +58,24 @@ def get_demo(demo):
|
|
43 |
with gr.Column():
|
44 |
for _ in range(MAX_LABELS):
|
45 |
column_mappings.append(gr.Dropdown(visible=False))
|
46 |
-
with gr.Column():
|
47 |
for _ in range(MAX_LABELS, MAX_LABELS + MAX_FEATURES):
|
48 |
column_mappings.append(gr.Dropdown(visible=False))
|
49 |
-
|
50 |
-
with gr.Accordion(label=
|
51 |
run_local = gr.Checkbox(value=True, label="Run in this Space")
|
52 |
-
use_inference = read_inference_type(
|
53 |
run_inference = gr.Checkbox(value=use_inference, label="Run with Inference API")
|
54 |
-
|
55 |
-
with gr.Accordion(label=
|
56 |
-
selected = read_scanners(
|
57 |
# currently we remove data_leakage from the default scanners
|
58 |
# Reason: data_leakage barely raises any issues and takes too many requests
|
59 |
# when using inference API, causing rate limit error
|
60 |
-
scan_config = selected + [
|
61 |
-
scanners = gr.CheckboxGroup(
|
|
|
|
|
62 |
|
63 |
with gr.Row():
|
64 |
run_btn = gr.Button(
|
@@ -67,69 +84,97 @@ def get_demo(demo):
|
|
67 |
interactive=True,
|
68 |
size="lg",
|
69 |
)
|
70 |
-
|
71 |
with gr.Row():
|
72 |
uid = uuid.uuid4()
|
73 |
-
uid_label = gr.Textbox(
|
|
|
|
|
74 |
logs = gr.Textbox(label="Giskard Bot Evaluation Log:", visible=False)
|
75 |
demo.load(get_logs_file, uid_label, logs, every=0.5)
|
76 |
-
|
77 |
-
gr.on(
|
|
|
78 |
fn=write_column_mapping_to_config,
|
79 |
-
inputs=[
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
|
81 |
-
gr.on(
|
|
|
|
|
|
|
|
|
|
|
82 |
fn=check_model_and_show_prediction,
|
83 |
-
inputs=[
|
84 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
85 |
|
86 |
-
dataset_id_input.blur(
|
|
|
|
|
87 |
|
88 |
dataset_config_input.change(
|
89 |
-
check_dataset_and_get_split,
|
90 |
-
inputs=[dataset_id_input, dataset_config_input],
|
91 |
-
outputs=[dataset_split_input]
|
92 |
-
|
93 |
-
scanners.change(
|
94 |
-
write_scanners,
|
95 |
-
inputs=scanners
|
96 |
)
|
97 |
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
)
|
102 |
|
103 |
gr.on(
|
104 |
triggers=[
|
105 |
run_btn.click,
|
106 |
-
|
107 |
fn=try_submit,
|
108 |
inputs=[
|
109 |
-
model_id_input,
|
110 |
-
dataset_id_input,
|
111 |
-
dataset_config_input,
|
112 |
-
dataset_split_input,
|
113 |
run_local,
|
114 |
-
uid_label
|
115 |
-
|
116 |
-
|
|
|
|
|
117 |
def enable_run_btn():
|
118 |
-
return
|
|
|
119 |
gr.on(
|
120 |
triggers=[
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
|
|
127 |
fn=enable_run_btn,
|
128 |
inputs=None,
|
129 |
-
outputs=[run_btn]
|
130 |
-
|
|
|
131 |
gr.on(
|
132 |
triggers=[label.change for label in column_mappings],
|
133 |
fn=enable_run_btn,
|
134 |
inputs=None,
|
135 |
-
outputs=[run_btn]
|
|
|
|
1 |
import gradio as gr
|
2 |
import uuid
|
3 |
+
from io_utils import (
|
4 |
+
read_scanners,
|
5 |
+
write_scanners,
|
6 |
+
read_inference_type,
|
7 |
+
write_inference_type,
|
8 |
+
get_logs_file,
|
9 |
+
)
|
10 |
from wordings import INTRODUCTION_MD, CONFIRM_MAPPING_DETAILS_MD
|
11 |
+
from text_classification_ui_helpers import (
|
12 |
+
try_submit,
|
13 |
+
check_dataset_and_get_config,
|
14 |
+
check_dataset_and_get_split,
|
15 |
+
check_model_and_show_prediction,
|
16 |
+
write_column_mapping_to_config,
|
17 |
+
)
|
18 |
|
19 |
MAX_LABELS = 20
|
20 |
MAX_FEATURES = 20
|
21 |
|
22 |
+
EXAMPLE_MODEL_ID = "cardiffnlp/twitter-roberta-base-sentiment-latest"
|
23 |
+
EXAMPLE_DATA_ID = "tweet_eval"
|
24 |
+
CONFIG_PATH = "./config.yaml"
|
25 |
+
|
26 |
|
27 |
def get_demo(demo):
|
28 |
with gr.Row():
|
|
|
37 |
label="Hugging Face Dataset id",
|
38 |
placeholder=EXAMPLE_DATA_ID + " (press enter to confirm)",
|
39 |
)
|
40 |
+
|
41 |
with gr.Row():
|
42 |
+
dataset_config_input = gr.Dropdown(label="Dataset Config", visible=False)
|
43 |
+
dataset_split_input = gr.Dropdown(label="Dataset Split", visible=False)
|
44 |
+
|
45 |
with gr.Row():
|
46 |
+
example_input = gr.Markdown("Example Input", visible=False)
|
47 |
with gr.Row():
|
48 |
+
example_prediction = gr.Label(label="Model Prediction Sample", visible=False)
|
49 |
+
|
50 |
with gr.Row():
|
51 |
+
with gr.Accordion(
|
52 |
+
label="Label and Feature Mapping", visible=False, open=False
|
53 |
+
) as column_mapping_accordion:
|
54 |
with gr.Row():
|
55 |
gr.Markdown(CONFIRM_MAPPING_DETAILS_MD)
|
56 |
column_mappings = []
|
|
|
58 |
with gr.Column():
|
59 |
for _ in range(MAX_LABELS):
|
60 |
column_mappings.append(gr.Dropdown(visible=False))
|
61 |
+
with gr.Column():
|
62 |
for _ in range(MAX_LABELS, MAX_LABELS + MAX_FEATURES):
|
63 |
column_mappings.append(gr.Dropdown(visible=False))
|
64 |
+
|
65 |
+
with gr.Accordion(label="Model Wrap Advance Config (optional)", open=False):
|
66 |
run_local = gr.Checkbox(value=True, label="Run in this Space")
|
67 |
+
use_inference = read_inference_type(CONFIG_PATH) == "hf_inference_api"
|
68 |
run_inference = gr.Checkbox(value=use_inference, label="Run with Inference API")
|
69 |
+
|
70 |
+
with gr.Accordion(label="Scanner Advance Config (optional)", open=False):
|
71 |
+
selected = read_scanners(CONFIG_PATH)
|
72 |
# currently we remove data_leakage from the default scanners
|
73 |
# Reason: data_leakage barely raises any issues and takes too many requests
|
74 |
# when using inference API, causing rate limit error
|
75 |
+
scan_config = selected + ["data_leakage"]
|
76 |
+
scanners = gr.CheckboxGroup(
|
77 |
+
choices=scan_config, value=selected, label="Scan Settings", visible=True
|
78 |
+
)
|
79 |
|
80 |
with gr.Row():
|
81 |
run_btn = gr.Button(
|
|
|
84 |
interactive=True,
|
85 |
size="lg",
|
86 |
)
|
87 |
+
|
88 |
with gr.Row():
|
89 |
uid = uuid.uuid4()
|
90 |
+
uid_label = gr.Textbox(
|
91 |
+
label="Evaluation ID:", value=uid, visible=False, interactive=False
|
92 |
+
)
|
93 |
logs = gr.Textbox(label="Giskard Bot Evaluation Log:", visible=False)
|
94 |
demo.load(get_logs_file, uid_label, logs, every=0.5)
|
95 |
+
|
96 |
+
gr.on(
|
97 |
+
triggers=[label.change for label in column_mappings],
|
98 |
fn=write_column_mapping_to_config,
|
99 |
+
inputs=[
|
100 |
+
dataset_id_input,
|
101 |
+
dataset_config_input,
|
102 |
+
dataset_split_input,
|
103 |
+
*column_mappings,
|
104 |
+
],
|
105 |
+
)
|
106 |
|
107 |
+
gr.on(
|
108 |
+
triggers=[
|
109 |
+
model_id_input.change,
|
110 |
+
dataset_config_input.change,
|
111 |
+
dataset_split_input.change,
|
112 |
+
],
|
113 |
fn=check_model_and_show_prediction,
|
114 |
+
inputs=[
|
115 |
+
model_id_input,
|
116 |
+
dataset_id_input,
|
117 |
+
dataset_config_input,
|
118 |
+
dataset_split_input,
|
119 |
+
],
|
120 |
+
outputs=[
|
121 |
+
example_input,
|
122 |
+
example_prediction,
|
123 |
+
column_mapping_accordion,
|
124 |
+
*column_mappings,
|
125 |
+
],
|
126 |
+
)
|
127 |
|
128 |
+
dataset_id_input.blur(
|
129 |
+
check_dataset_and_get_config, dataset_id_input, dataset_config_input
|
130 |
+
)
|
131 |
|
132 |
dataset_config_input.change(
|
133 |
+
check_dataset_and_get_split,
|
134 |
+
inputs=[dataset_id_input, dataset_config_input],
|
135 |
+
outputs=[dataset_split_input],
|
|
|
|
|
|
|
|
|
136 |
)
|
137 |
|
138 |
+
scanners.change(write_scanners, inputs=scanners)
|
139 |
+
|
140 |
+
run_inference.change(write_inference_type, inputs=[run_inference])
|
|
|
141 |
|
142 |
gr.on(
|
143 |
triggers=[
|
144 |
run_btn.click,
|
145 |
+
],
|
146 |
fn=try_submit,
|
147 |
inputs=[
|
148 |
+
model_id_input,
|
149 |
+
dataset_id_input,
|
150 |
+
dataset_config_input,
|
151 |
+
dataset_split_input,
|
152 |
run_local,
|
153 |
+
uid_label,
|
154 |
+
],
|
155 |
+
outputs=[run_btn, logs],
|
156 |
+
)
|
157 |
+
|
158 |
def enable_run_btn():
|
159 |
+
return gr.update(interactive=True)
|
160 |
+
|
161 |
gr.on(
|
162 |
triggers=[
|
163 |
+
model_id_input.change,
|
164 |
+
dataset_config_input.change,
|
165 |
+
dataset_split_input.change,
|
166 |
+
run_inference.change,
|
167 |
+
run_local.change,
|
168 |
+
scanners.change,
|
169 |
+
],
|
170 |
fn=enable_run_btn,
|
171 |
inputs=None,
|
172 |
+
outputs=[run_btn],
|
173 |
+
)
|
174 |
+
|
175 |
gr.on(
|
176 |
triggers=[label.change for label in column_mappings],
|
177 |
fn=enable_run_btn,
|
178 |
inputs=None,
|
179 |
+
outputs=[run_btn],
|
180 |
+
)
|
fetch_utils.py
CHANGED
@@ -1,6 +1,8 @@
|
|
1 |
-
import datasets
|
2 |
import logging
|
3 |
|
|
|
|
|
|
|
4 |
def check_dataset_and_get_config(dataset_id):
|
5 |
try:
|
6 |
configs = datasets.get_dataset_config_names(dataset_id)
|
@@ -9,17 +11,22 @@ def check_dataset_and_get_config(dataset_id):
|
|
9 |
# Dataset may not exist
|
10 |
return None
|
11 |
|
|
|
12 |
def check_dataset_and_get_split(dataset_id, dataset_config):
|
13 |
try:
|
14 |
ds = datasets.load_dataset(dataset_id, dataset_config)
|
15 |
except Exception as e:
|
16 |
# Dataset may not exist
|
17 |
-
logging.warning(
|
|
|
|
|
18 |
return None
|
19 |
try:
|
20 |
splits = list(ds.keys())
|
21 |
return splits
|
22 |
except Exception as e:
|
23 |
# Dataset has no splits
|
24 |
-
logging.warning(
|
25 |
-
|
|
|
|
|
|
|
|
1 |
import logging
|
2 |
|
3 |
+
import datasets
|
4 |
+
|
5 |
+
|
6 |
def check_dataset_and_get_config(dataset_id):
|
7 |
try:
|
8 |
configs = datasets.get_dataset_config_names(dataset_id)
|
|
|
11 |
# Dataset may not exist
|
12 |
return None
|
13 |
|
14 |
+
|
15 |
def check_dataset_and_get_split(dataset_id, dataset_config):
|
16 |
try:
|
17 |
ds = datasets.load_dataset(dataset_id, dataset_config)
|
18 |
except Exception as e:
|
19 |
# Dataset may not exist
|
20 |
+
logging.warning(
|
21 |
+
f"Failed to load dataset {dataset_id} with config {dataset_config}: {e}"
|
22 |
+
)
|
23 |
return None
|
24 |
try:
|
25 |
splits = list(ds.keys())
|
26 |
return splits
|
27 |
except Exception as e:
|
28 |
# Dataset has no splits
|
29 |
+
logging.warning(
|
30 |
+
f"Dataset {dataset_id} with config {dataset_config} has no splits: {e}"
|
31 |
+
)
|
32 |
+
return None
|
io_utils.py
CHANGED
@@ -1,14 +1,17 @@
|
|
1 |
-
import yaml
|
2 |
-
import subprocess
|
3 |
import os
|
|
|
|
|
|
|
4 |
|
5 |
YAML_PATH = "./config.yaml"
|
6 |
PIPE_PATH = "./tmp/pipe"
|
7 |
|
|
|
8 |
class Dumper(yaml.Dumper):
|
9 |
def increase_indent(self, flow=False, *args, **kwargs):
|
10 |
return super().increase_indent(flow=flow, indentless=False)
|
11 |
-
|
|
|
12 |
# read scanners from yaml file
|
13 |
# return a list of scanners
|
14 |
def read_scanners(path):
|
@@ -18,6 +21,7 @@ def read_scanners(path):
|
|
18 |
scanners = config.get("detectors", [])
|
19 |
return scanners
|
20 |
|
|
|
21 |
# convert a list of scanners to yaml file
|
22 |
def write_scanners(scanners):
|
23 |
print(scanners)
|
@@ -28,6 +32,7 @@ def write_scanners(scanners):
|
|
28 |
# save scanners to detectors in yaml
|
29 |
yaml.dump(config, f, Dumper=Dumper)
|
30 |
|
|
|
31 |
# read model_type from yaml file
|
32 |
def read_inference_type(path):
|
33 |
inference_type = ""
|
@@ -36,17 +41,19 @@ def read_inference_type(path):
|
|
36 |
inference_type = config.get("inference_type", "")
|
37 |
return inference_type
|
38 |
|
|
|
39 |
# write model_type to yaml file
|
40 |
def write_inference_type(use_inference):
|
41 |
with open(YAML_PATH, "r+") as f:
|
42 |
config = yaml.load(f, Loader=yaml.FullLoader)
|
43 |
if use_inference:
|
44 |
-
config["inference_type"] =
|
45 |
else:
|
46 |
-
config["inference_type"] =
|
47 |
# save inference_type to inference_type in yaml
|
48 |
yaml.dump(config, f, Dumper=Dumper)
|
49 |
|
|
|
50 |
# read column mapping from yaml file
|
51 |
def read_column_mapping(path):
|
52 |
column_mapping = {}
|
@@ -56,6 +63,7 @@ def read_column_mapping(path):
|
|
56 |
column_mapping = config.get("column_mapping", dict())
|
57 |
return column_mapping
|
58 |
|
|
|
59 |
# write column mapping to yaml file
|
60 |
def write_column_mapping(mapping):
|
61 |
with open(YAML_PATH, "r") as f:
|
@@ -70,6 +78,7 @@ def write_column_mapping(mapping):
|
|
70 |
# save column_mapping to column_mapping in yaml
|
71 |
yaml.dump(config, f, Dumper=Dumper)
|
72 |
|
|
|
73 |
# convert column mapping dataframe to json
|
74 |
def convert_column_mapping_to_json(df, label=""):
|
75 |
column_mapping = {}
|
@@ -78,6 +87,7 @@ def convert_column_mapping_to_json(df, label=""):
|
|
78 |
column_mapping[label].append(row.tolist())
|
79 |
return column_mapping
|
80 |
|
|
|
81 |
def get_logs_file(uid):
|
82 |
try:
|
83 |
file = open(f"./tmp/{uid}_log", "r")
|
@@ -85,20 +95,23 @@ def get_logs_file(uid):
|
|
85 |
except Exception:
|
86 |
return "Log file does not exist"
|
87 |
|
|
|
88 |
def write_log_to_user_file(id, log):
|
89 |
with open(f"./tmp/{id}_log", "a") as f:
|
90 |
f.write(log)
|
91 |
|
|
|
92 |
def save_job_to_pipe(id, job, lock):
|
93 |
-
if not os.path.exists(
|
94 |
-
os.makedirs(
|
95 |
job = [str(i) for i in job]
|
96 |
job = ",".join(job)
|
97 |
print(job)
|
98 |
with lock:
|
99 |
with open(PIPE_PATH, "a") as f:
|
100 |
# write each element in job
|
101 |
-
f.write(f
|
|
|
102 |
|
103 |
def pop_job_from_pipe():
|
104 |
if not os.path.exists(PIPE_PATH):
|
@@ -113,7 +126,7 @@ def pop_job_from_pipe():
|
|
113 |
f.close()
|
114 |
if len(job) == 0:
|
115 |
return
|
116 |
-
job_info = job.split(
|
117 |
if len(job_info) != 2:
|
118 |
raise ValueError("Invalid job info: ", job_info)
|
119 |
|
|
|
|
|
|
|
1 |
import os
|
2 |
+
import subprocess
|
3 |
+
|
4 |
+
import yaml
|
5 |
|
6 |
YAML_PATH = "./config.yaml"
|
7 |
PIPE_PATH = "./tmp/pipe"
|
8 |
|
9 |
+
|
10 |
class Dumper(yaml.Dumper):
|
11 |
def increase_indent(self, flow=False, *args, **kwargs):
|
12 |
return super().increase_indent(flow=flow, indentless=False)
|
13 |
+
|
14 |
+
|
15 |
# read scanners from yaml file
|
16 |
# return a list of scanners
|
17 |
def read_scanners(path):
|
|
|
21 |
scanners = config.get("detectors", [])
|
22 |
return scanners
|
23 |
|
24 |
+
|
25 |
# convert a list of scanners to yaml file
|
26 |
def write_scanners(scanners):
|
27 |
print(scanners)
|
|
|
32 |
# save scanners to detectors in yaml
|
33 |
yaml.dump(config, f, Dumper=Dumper)
|
34 |
|
35 |
+
|
36 |
# read model_type from yaml file
|
37 |
def read_inference_type(path):
|
38 |
inference_type = ""
|
|
|
41 |
inference_type = config.get("inference_type", "")
|
42 |
return inference_type
|
43 |
|
44 |
+
|
45 |
# write model_type to yaml file
|
46 |
def write_inference_type(use_inference):
|
47 |
with open(YAML_PATH, "r+") as f:
|
48 |
config = yaml.load(f, Loader=yaml.FullLoader)
|
49 |
if use_inference:
|
50 |
+
config["inference_type"] = "hf_inference_api"
|
51 |
else:
|
52 |
+
config["inference_type"] = "hf_pipeline"
|
53 |
# save inference_type to inference_type in yaml
|
54 |
yaml.dump(config, f, Dumper=Dumper)
|
55 |
|
56 |
+
|
57 |
# read column mapping from yaml file
|
58 |
def read_column_mapping(path):
|
59 |
column_mapping = {}
|
|
|
63 |
column_mapping = config.get("column_mapping", dict())
|
64 |
return column_mapping
|
65 |
|
66 |
+
|
67 |
# write column mapping to yaml file
|
68 |
def write_column_mapping(mapping):
|
69 |
with open(YAML_PATH, "r") as f:
|
|
|
78 |
# save column_mapping to column_mapping in yaml
|
79 |
yaml.dump(config, f, Dumper=Dumper)
|
80 |
|
81 |
+
|
82 |
# convert column mapping dataframe to json
|
83 |
def convert_column_mapping_to_json(df, label=""):
|
84 |
column_mapping = {}
|
|
|
87 |
column_mapping[label].append(row.tolist())
|
88 |
return column_mapping
|
89 |
|
90 |
+
|
91 |
def get_logs_file(uid):
|
92 |
try:
|
93 |
file = open(f"./tmp/{uid}_log", "r")
|
|
|
95 |
except Exception:
|
96 |
return "Log file does not exist"
|
97 |
|
98 |
+
|
99 |
def write_log_to_user_file(id, log):
|
100 |
with open(f"./tmp/{id}_log", "a") as f:
|
101 |
f.write(log)
|
102 |
|
103 |
+
|
104 |
def save_job_to_pipe(id, job, lock):
|
105 |
+
if not os.path.exists("./tmp"):
|
106 |
+
os.makedirs("./tmp")
|
107 |
job = [str(i) for i in job]
|
108 |
job = ",".join(job)
|
109 |
print(job)
|
110 |
with lock:
|
111 |
with open(PIPE_PATH, "a") as f:
|
112 |
# write each element in job
|
113 |
+
f.write(f"{id}@{job}\n")
|
114 |
+
|
115 |
|
116 |
def pop_job_from_pipe():
|
117 |
if not os.path.exists(PIPE_PATH):
|
|
|
126 |
f.close()
|
127 |
if len(job) == 0:
|
128 |
return
|
129 |
+
job_info = job.split("\n")[0].split("@")
|
130 |
if len(job_info) != 2:
|
131 |
raise ValueError("Invalid job info: ", job_info)
|
132 |
|
mlflow_test.py
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from pathlib import Path
|
2 |
+
from mlflow.utils.environment import _PythonEnv
|
3 |
+
from mlflow.utils.virtualenv import (
|
4 |
+
_PYENV_ROOT_DIR,
|
5 |
+
_VIRTUALENV_ENVS_DIR,
|
6 |
+
_create_virtualenv,
|
7 |
+
_get_mlflow_virtualenv_root,
|
8 |
+
_get_virtualenv_extra_env_vars,
|
9 |
+
_get_virtualenv_name,
|
10 |
+
_install_python,
|
11 |
+
)
|
12 |
+
|
13 |
+
|
14 |
+
_create_virtualenv(
|
15 |
+
"/Users/inoki/giskard-home/projects/credit/models/2a2b6a9c-4050-4bb6-9024-00bf15651262",
|
16 |
+
Path("/opt/homebrew/bin/python3.10"),
|
17 |
+
Path("/Users/inoki/giskard-home/mlflow-venv1"),
|
18 |
+
_PythonEnv()
|
19 |
+
)
|
20 |
+
|
run_jobs.py
CHANGED
@@ -1,11 +1,13 @@
|
|
1 |
-
from io_utils import pop_job_from_pipe
|
2 |
-
import time
|
3 |
import threading
|
|
|
|
|
|
|
|
|
4 |
|
5 |
def start_process_run_job():
|
6 |
try:
|
7 |
print("Running jobs in thread")
|
8 |
-
global thread
|
9 |
thread = threading.Thread(target=run_job)
|
10 |
thread.daemon = True
|
11 |
thread.do_run = True
|
@@ -13,11 +15,14 @@ def start_process_run_job():
|
|
13 |
|
14 |
except Exception as e:
|
15 |
print("Failed to start thread: ", e)
|
|
|
|
|
16 |
def stop_thread():
|
17 |
print("Stop thread")
|
18 |
thread.do_run = False
|
19 |
|
20 |
-
|
|
|
21 |
while True:
|
22 |
print(thread.do_run)
|
23 |
try:
|
@@ -26,4 +31,4 @@ def run_job():
|
|
26 |
except KeyboardInterrupt:
|
27 |
print("KeyboardInterrupt stop background thread")
|
28 |
stop_thread()
|
29 |
-
break
|
|
|
|
|
|
|
1 |
import threading
|
2 |
+
import time
|
3 |
+
|
4 |
+
from io_utils import pop_job_from_pipe
|
5 |
+
|
6 |
|
7 |
def start_process_run_job():
|
8 |
try:
|
9 |
print("Running jobs in thread")
|
10 |
+
global thread
|
11 |
thread = threading.Thread(target=run_job)
|
12 |
thread.daemon = True
|
13 |
thread.do_run = True
|
|
|
15 |
|
16 |
except Exception as e:
|
17 |
print("Failed to start thread: ", e)
|
18 |
+
|
19 |
+
|
20 |
def stop_thread():
|
21 |
print("Stop thread")
|
22 |
thread.do_run = False
|
23 |
|
24 |
+
|
25 |
+
def run_job():
|
26 |
while True:
|
27 |
print(thread.do_run)
|
28 |
try:
|
|
|
31 |
except KeyboardInterrupt:
|
32 |
print("KeyboardInterrupt stop background thread")
|
33 |
stop_thread()
|
34 |
+
break
|
text_classification.py
CHANGED
@@ -1,10 +1,12 @@
|
|
1 |
-
import datasets
|
2 |
-
import logging
|
3 |
import json
|
4 |
-
import
|
|
|
|
|
5 |
import huggingface_hub
|
|
|
6 |
from transformers import pipeline
|
7 |
|
|
|
8 |
def get_labels_and_features_from_dataset(dataset_id, dataset_config, split):
|
9 |
try:
|
10 |
ds = datasets.load_dataset(dataset_id, dataset_config)[split]
|
@@ -13,9 +15,12 @@ def get_labels_and_features_from_dataset(dataset_id, dataset_config, split):
|
|
13 |
features = [f for f in dataset_features.keys() if f != "label"]
|
14 |
return labels, features
|
15 |
except Exception as e:
|
16 |
-
logging.warning(
|
|
|
|
|
17 |
return None, None
|
18 |
|
|
|
19 |
def check_model(model_id):
|
20 |
try:
|
21 |
task = huggingface_hub.model_info(model_id).pipeline_tag
|
@@ -28,7 +33,7 @@ def check_model(model_id):
|
|
28 |
return ppl
|
29 |
except Exception:
|
30 |
return None
|
31 |
-
|
32 |
|
33 |
def text_classificaiton_match_label_case_unsensative(id2label_mapping, label):
|
34 |
for model_label in id2label_mapping.keys():
|
@@ -45,7 +50,7 @@ def text_classification_map_model_and_dataset_labels(id2label, dataset_features)
|
|
45 |
continue
|
46 |
if len(feature.names) != len(id2label_mapping.keys()):
|
47 |
continue
|
48 |
-
|
49 |
dataset_labels = feature.names
|
50 |
# Try to match labels
|
51 |
for label in feature.names:
|
@@ -53,7 +58,9 @@ def text_classification_map_model_and_dataset_labels(id2label, dataset_features)
|
|
53 |
model_label = label
|
54 |
else:
|
55 |
# Try to find case unsensative
|
56 |
-
model_label, label = text_classificaiton_match_label_case_unsensative(
|
|
|
|
|
57 |
if model_label is not None:
|
58 |
id2label_mapping[model_label] = label
|
59 |
else:
|
@@ -61,7 +68,8 @@ def text_classification_map_model_and_dataset_labels(id2label, dataset_features)
|
|
61 |
|
62 |
return id2label_mapping, dataset_labels
|
63 |
|
64 |
-
|
|
|
65 |
params:
|
66 |
column_mapping: dict
|
67 |
example: {
|
@@ -72,7 +80,9 @@ params:
|
|
72 |
}
|
73 |
}
|
74 |
ppl: pipeline
|
75 |
-
|
|
|
|
|
76 |
def check_column_mapping_keys_validity(column_mapping, ppl):
|
77 |
# get the element in all the list elements
|
78 |
column_mapping = json.loads(column_mapping)
|
@@ -83,10 +93,11 @@ def check_column_mapping_keys_validity(column_mapping, ppl):
|
|
83 |
|
84 |
id2label = ppl.model.config.id2label
|
85 |
original_labels = set(id2label.values())
|
86 |
-
|
87 |
return user_labels == model_labels == original_labels
|
88 |
|
89 |
-
|
|
|
90 |
params:
|
91 |
column_mapping: dict
|
92 |
dataset_features: dict
|
@@ -94,7 +105,9 @@ params:
|
|
94 |
'text': Value(dtype='string', id=None),
|
95 |
'label': ClassLabel(names=['negative', 'neutral', 'positive'], id=None)
|
96 |
}
|
97 |
-
|
|
|
|
|
98 |
def infer_text_input_column(column_mapping, dataset_features):
|
99 |
# Check whether we need to infer the text input column
|
100 |
infer_text_input_column = True
|
@@ -109,18 +122,20 @@ def infer_text_input_column(column_mapping, dataset_features):
|
|
109 |
|
110 |
if infer_text_input_column:
|
111 |
# Try to retrieve one
|
112 |
-
candidates = [
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
|
|
117 |
if len(candidates) > 0:
|
118 |
logging.debug(f"Candidates are {candidates}")
|
119 |
column_mapping["text"] = candidates[0]
|
120 |
-
|
121 |
return column_mapping, feature_map_df
|
122 |
|
123 |
-
|
|
|
124 |
params:
|
125 |
column_mapping: dict
|
126 |
id2label_mapping: dict
|
@@ -130,8 +145,12 @@ params:
|
|
130 |
'neutral': 'neutral',
|
131 |
'positive': 'positive'
|
132 |
}
|
133 |
-
|
134 |
-
|
|
|
|
|
|
|
|
|
135 |
# Check whether we need to infer the output label column
|
136 |
if "data" in column_mapping.keys():
|
137 |
if isinstance(column_mapping["data"], list):
|
@@ -139,25 +158,29 @@ def infer_output_label_column(column_mapping, id2label_mapping, id2label, datase
|
|
139 |
for user_label, model_label in column_mapping["data"]:
|
140 |
id2label_mapping[model_label] = user_label
|
141 |
elif None in id2label_mapping.values():
|
142 |
-
column_mapping["label"] = {
|
143 |
-
i: None for i in id2label.keys()
|
144 |
-
}
|
145 |
return column_mapping, None
|
146 |
-
|
147 |
if "data" not in column_mapping.keys():
|
148 |
# Column mapping should contain original model labels
|
149 |
column_mapping["label"] = {
|
150 |
-
str(i): id2label_mapping[label]
|
|
|
151 |
}
|
152 |
# print('>>>>> column_mapping >>>>>', column_mapping)
|
153 |
|
154 |
-
id2label_df = pd.DataFrame(
|
155 |
-
|
156 |
-
|
157 |
-
|
|
|
|
|
|
|
|
|
158 |
|
159 |
return column_mapping, id2label_df
|
160 |
|
|
|
161 |
def check_dataset_features_validity(d_id, config, split):
|
162 |
# We assume dataset is ok here
|
163 |
ds = datasets.load_dataset(d_id, config)[split]
|
@@ -171,6 +194,7 @@ def check_dataset_features_validity(d_id, config, split):
|
|
171 |
|
172 |
return df, dataset_features
|
173 |
|
|
|
174 |
def get_example_prediction(ppl, dataset_id, dataset_config, dataset_split):
|
175 |
# get a sample prediction from the model on the dataset
|
176 |
prediction_input = None
|
@@ -184,7 +208,7 @@ def get_example_prediction(ppl, dataset_id, dataset_config, dataset_split):
|
|
184 |
else:
|
185 |
prediction_input = ds[0]["text"]
|
186 |
|
187 |
-
print(
|
188 |
results = ppl(prediction_input, top_k=None)
|
189 |
# Display results in original label and mapped label
|
190 |
prediction_result = {
|
@@ -193,7 +217,6 @@ def get_example_prediction(ppl, dataset_id, dataset_config, dataset_split):
|
|
193 |
except Exception:
|
194 |
# Pipeline prediction failed, need to provide labels
|
195 |
return prediction_input, None
|
196 |
-
|
197 |
|
198 |
return prediction_input, prediction_result
|
199 |
|
@@ -212,37 +235,55 @@ def get_sample_prediction(ppl, df, column_mapping, id2label_mapping):
|
|
212 |
except Exception:
|
213 |
# Pipeline prediction failed, need to provide labels
|
214 |
return prediction_input, None
|
215 |
-
|
216 |
# Display results in original label and mapped label
|
217 |
prediction_result = {
|
218 |
-
f'{result["label"]}(original) - {id2label_mapping[result["label"]]}(mapped)': result[
|
|
|
|
|
|
|
219 |
}
|
220 |
return prediction_input, prediction_result
|
221 |
|
|
|
222 |
def text_classification_fix_column_mapping(column_mapping, ppl, d_id, config, split):
|
223 |
# load dataset as pd DataFrame
|
224 |
# get features column from dataset
|
225 |
df, dataset_features = check_dataset_features_validity(d_id, config, split)
|
226 |
|
227 |
-
column_mapping, feature_map_df = infer_text_input_column(
|
|
|
|
|
228 |
if feature_map_df is None:
|
229 |
# dataset does not have any features
|
230 |
-
return None, None, None, None, None
|
231 |
|
232 |
# Retrieve all labels
|
233 |
id2label = ppl.model.config.id2label
|
234 |
|
235 |
# Infer labels
|
236 |
-
id2label_mapping, dataset_labels = text_classification_map_model_and_dataset_labels(
|
237 |
-
|
|
|
|
|
|
|
|
|
238 |
if id2label_df is None:
|
239 |
# does not able to infer output label column
|
240 |
return column_mapping, None, None, None, feature_map_df
|
241 |
-
|
242 |
# Get a sample prediction
|
243 |
-
prediction_input, prediction_result = get_sample_prediction(
|
|
|
|
|
244 |
if prediction_result is None:
|
245 |
# does not able to get a sample prediction
|
246 |
return column_mapping, prediction_input, None, id2label_df, feature_map_df
|
247 |
-
|
248 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import json
|
2 |
+
import logging
|
3 |
+
|
4 |
+
import datasets
|
5 |
import huggingface_hub
|
6 |
+
import pandas as pd
|
7 |
from transformers import pipeline
|
8 |
|
9 |
+
|
10 |
def get_labels_and_features_from_dataset(dataset_id, dataset_config, split):
|
11 |
try:
|
12 |
ds = datasets.load_dataset(dataset_id, dataset_config)[split]
|
|
|
15 |
features = [f for f in dataset_features.keys() if f != "label"]
|
16 |
return labels, features
|
17 |
except Exception as e:
|
18 |
+
logging.warning(
|
19 |
+
f"Failed to load dataset {dataset_id} with config {dataset_config}: {e}"
|
20 |
+
)
|
21 |
return None, None
|
22 |
|
23 |
+
|
24 |
def check_model(model_id):
|
25 |
try:
|
26 |
task = huggingface_hub.model_info(model_id).pipeline_tag
|
|
|
33 |
return ppl
|
34 |
except Exception:
|
35 |
return None
|
36 |
+
|
37 |
|
38 |
def text_classificaiton_match_label_case_unsensative(id2label_mapping, label):
|
39 |
for model_label in id2label_mapping.keys():
|
|
|
50 |
continue
|
51 |
if len(feature.names) != len(id2label_mapping.keys()):
|
52 |
continue
|
53 |
+
|
54 |
dataset_labels = feature.names
|
55 |
# Try to match labels
|
56 |
for label in feature.names:
|
|
|
58 |
model_label = label
|
59 |
else:
|
60 |
# Try to find case unsensative
|
61 |
+
model_label, label = text_classificaiton_match_label_case_unsensative(
|
62 |
+
id2label_mapping, label
|
63 |
+
)
|
64 |
if model_label is not None:
|
65 |
id2label_mapping[model_label] = label
|
66 |
else:
|
|
|
68 |
|
69 |
return id2label_mapping, dataset_labels
|
70 |
|
71 |
+
|
72 |
+
"""
|
73 |
params:
|
74 |
column_mapping: dict
|
75 |
example: {
|
|
|
80 |
}
|
81 |
}
|
82 |
ppl: pipeline
|
83 |
+
"""
|
84 |
+
|
85 |
+
|
86 |
def check_column_mapping_keys_validity(column_mapping, ppl):
|
87 |
# get the element in all the list elements
|
88 |
column_mapping = json.loads(column_mapping)
|
|
|
93 |
|
94 |
id2label = ppl.model.config.id2label
|
95 |
original_labels = set(id2label.values())
|
96 |
+
|
97 |
return user_labels == model_labels == original_labels
|
98 |
|
99 |
+
|
100 |
+
"""
|
101 |
params:
|
102 |
column_mapping: dict
|
103 |
dataset_features: dict
|
|
|
105 |
'text': Value(dtype='string', id=None),
|
106 |
'label': ClassLabel(names=['negative', 'neutral', 'positive'], id=None)
|
107 |
}
|
108 |
+
"""
|
109 |
+
|
110 |
+
|
111 |
def infer_text_input_column(column_mapping, dataset_features):
|
112 |
# Check whether we need to infer the text input column
|
113 |
infer_text_input_column = True
|
|
|
122 |
|
123 |
if infer_text_input_column:
|
124 |
# Try to retrieve one
|
125 |
+
candidates = [
|
126 |
+
f for f in dataset_features if dataset_features[f].dtype == "string"
|
127 |
+
]
|
128 |
+
feature_map_df = pd.DataFrame(
|
129 |
+
{"Dataset Features": [candidates[0]], "Model Input Features": ["text"]}
|
130 |
+
)
|
131 |
if len(candidates) > 0:
|
132 |
logging.debug(f"Candidates are {candidates}")
|
133 |
column_mapping["text"] = candidates[0]
|
134 |
+
|
135 |
return column_mapping, feature_map_df
|
136 |
|
137 |
+
|
138 |
+
"""
|
139 |
params:
|
140 |
column_mapping: dict
|
141 |
id2label_mapping: dict
|
|
|
145 |
'neutral': 'neutral',
|
146 |
'positive': 'positive'
|
147 |
}
|
148 |
+
"""
|
149 |
+
|
150 |
+
|
151 |
+
def infer_output_label_column(
|
152 |
+
column_mapping, id2label_mapping, id2label, dataset_labels
|
153 |
+
):
|
154 |
# Check whether we need to infer the output label column
|
155 |
if "data" in column_mapping.keys():
|
156 |
if isinstance(column_mapping["data"], list):
|
|
|
158 |
for user_label, model_label in column_mapping["data"]:
|
159 |
id2label_mapping[model_label] = user_label
|
160 |
elif None in id2label_mapping.values():
|
161 |
+
column_mapping["label"] = {i: None for i in id2label.keys()}
|
|
|
|
|
162 |
return column_mapping, None
|
163 |
+
|
164 |
if "data" not in column_mapping.keys():
|
165 |
# Column mapping should contain original model labels
|
166 |
column_mapping["label"] = {
|
167 |
+
str(i): id2label_mapping[label]
|
168 |
+
for i, label in zip(id2label.keys(), dataset_labels)
|
169 |
}
|
170 |
# print('>>>>> column_mapping >>>>>', column_mapping)
|
171 |
|
172 |
+
id2label_df = pd.DataFrame(
|
173 |
+
{
|
174 |
+
"Dataset Labels": dataset_labels,
|
175 |
+
"Model Prediction Labels": [
|
176 |
+
id2label_mapping[label] for label in dataset_labels
|
177 |
+
],
|
178 |
+
}
|
179 |
+
)
|
180 |
|
181 |
return column_mapping, id2label_df
|
182 |
|
183 |
+
|
184 |
def check_dataset_features_validity(d_id, config, split):
|
185 |
# We assume dataset is ok here
|
186 |
ds = datasets.load_dataset(d_id, config)[split]
|
|
|
194 |
|
195 |
return df, dataset_features
|
196 |
|
197 |
+
|
198 |
def get_example_prediction(ppl, dataset_id, dataset_config, dataset_split):
|
199 |
# get a sample prediction from the model on the dataset
|
200 |
prediction_input = None
|
|
|
208 |
else:
|
209 |
prediction_input = ds[0]["text"]
|
210 |
|
211 |
+
print("prediction_input", prediction_input)
|
212 |
results = ppl(prediction_input, top_k=None)
|
213 |
# Display results in original label and mapped label
|
214 |
prediction_result = {
|
|
|
217 |
except Exception:
|
218 |
# Pipeline prediction failed, need to provide labels
|
219 |
return prediction_input, None
|
|
|
220 |
|
221 |
return prediction_input, prediction_result
|
222 |
|
|
|
235 |
except Exception:
|
236 |
# Pipeline prediction failed, need to provide labels
|
237 |
return prediction_input, None
|
238 |
+
|
239 |
# Display results in original label and mapped label
|
240 |
prediction_result = {
|
241 |
+
f'{result["label"]}(original) - {id2label_mapping[result["label"]]}(mapped)': result[
|
242 |
+
"score"
|
243 |
+
]
|
244 |
+
for result in results
|
245 |
}
|
246 |
return prediction_input, prediction_result
|
247 |
|
248 |
+
|
249 |
def text_classification_fix_column_mapping(column_mapping, ppl, d_id, config, split):
|
250 |
# load dataset as pd DataFrame
|
251 |
# get features column from dataset
|
252 |
df, dataset_features = check_dataset_features_validity(d_id, config, split)
|
253 |
|
254 |
+
column_mapping, feature_map_df = infer_text_input_column(
|
255 |
+
column_mapping, dataset_features
|
256 |
+
)
|
257 |
if feature_map_df is None:
|
258 |
# dataset does not have any features
|
259 |
+
return None, None, None, None, None
|
260 |
|
261 |
# Retrieve all labels
|
262 |
id2label = ppl.model.config.id2label
|
263 |
|
264 |
# Infer labels
|
265 |
+
id2label_mapping, dataset_labels = text_classification_map_model_and_dataset_labels(
|
266 |
+
id2label, dataset_features
|
267 |
+
)
|
268 |
+
column_mapping, id2label_df = infer_output_label_column(
|
269 |
+
column_mapping, id2label_mapping, id2label, dataset_labels
|
270 |
+
)
|
271 |
if id2label_df is None:
|
272 |
# does not able to infer output label column
|
273 |
return column_mapping, None, None, None, feature_map_df
|
274 |
+
|
275 |
# Get a sample prediction
|
276 |
+
prediction_input, prediction_result = get_sample_prediction(
|
277 |
+
ppl, df, column_mapping, id2label_mapping
|
278 |
+
)
|
279 |
if prediction_result is None:
|
280 |
# does not able to get a sample prediction
|
281 |
return column_mapping, prediction_input, None, id2label_df, feature_map_df
|
282 |
+
|
283 |
+
return (
|
284 |
+
column_mapping,
|
285 |
+
prediction_input,
|
286 |
+
prediction_result,
|
287 |
+
id2label_df,
|
288 |
+
feature_map_df,
|
289 |
+
)
|
text_classification_ui_helpers.py
CHANGED
@@ -1,23 +1,35 @@
|
|
1 |
-
import
|
2 |
-
from wordings import CONFIRM_MAPPING_DETAILS_FAIL_RAW
|
3 |
import json
|
4 |
-
import os
|
5 |
import logging
|
|
|
6 |
import threading
|
7 |
-
|
8 |
import datasets
|
9 |
-
import
|
10 |
-
from text_classification import get_labels_and_features_from_dataset, check_model, get_example_prediction
|
11 |
from transformers.pipelines import TextClassificationPipeline
|
12 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
MAX_LABELS = 20
|
14 |
MAX_FEATURES = 20
|
15 |
|
16 |
-
HF_REPO_ID =
|
17 |
-
HF_SPACE_ID =
|
18 |
-
HF_WRITE_TOKEN =
|
19 |
CONFIG_PATH = "./config.yaml"
|
20 |
|
|
|
21 |
def check_dataset_and_get_config(dataset_id):
|
22 |
try:
|
23 |
write_column_mapping(None)
|
@@ -27,6 +39,7 @@ def check_dataset_and_get_config(dataset_id):
|
|
27 |
# Dataset may not exist
|
28 |
pass
|
29 |
|
|
|
30 |
def check_dataset_and_get_split(dataset_id, dataset_config):
|
31 |
try:
|
32 |
splits = list(datasets.load_dataset(dataset_id, dataset_config).keys())
|
@@ -36,8 +49,11 @@ def check_dataset_and_get_split(dataset_id, dataset_config):
|
|
36 |
# gr.Warning(f"Failed to load dataset {dataset_id} with config {dataset_config}: {e}")
|
37 |
pass
|
38 |
|
|
|
39 |
def write_column_mapping_to_config(dataset_id, dataset_config, dataset_split, *labels):
|
40 |
-
ds_labels, ds_features = get_labels_and_features_from_dataset(
|
|
|
|
|
41 |
if labels is None:
|
42 |
return
|
43 |
labels = [*labels]
|
@@ -54,45 +70,73 @@ def write_column_mapping_to_config(dataset_id, dataset_config, dataset_split, *l
|
|
54 |
|
55 |
if "features" not in all_mappings.keys():
|
56 |
all_mappings["features"] = dict()
|
57 |
-
for i, feat in enumerate(labels[MAX_LABELS:(MAX_LABELS + MAX_FEATURES)]):
|
58 |
if feat:
|
59 |
all_mappings["features"][feat] = ds_features[i]
|
60 |
write_column_mapping(all_mappings)
|
61 |
|
|
|
62 |
def list_labels_and_features_from_dataset(ds_labels, ds_features, model_id2label):
|
63 |
model_labels = list(model_id2label.values())
|
64 |
len_model_labels = len(model_labels)
|
65 |
-
print(model_labels, model_id2label, 3%len_model_labels)
|
66 |
-
lables = [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
lables += [gr.Dropdown(visible=False) for _ in range(MAX_LABELS - len(lables))]
|
68 |
# TODO: Substitute 'text' with more features for zero-shot
|
69 |
-
features = [
|
70 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
return lables + features
|
72 |
|
73 |
-
|
|
|
|
|
|
|
74 |
ppl = check_model(model_id)
|
75 |
if ppl is None or not isinstance(ppl, TextClassificationPipeline):
|
76 |
gr.Warning("Please check your model.")
|
77 |
return (
|
78 |
gr.update(visible=False),
|
79 |
gr.update(visible=False),
|
80 |
-
*[gr.update(visible=False) for _ in range(MAX_LABELS + MAX_FEATURES)]
|
81 |
)
|
82 |
-
|
83 |
-
dropdown_placement = [
|
84 |
-
|
85 |
-
|
|
|
|
|
86 |
gr.Warning("Model not found")
|
87 |
return (
|
88 |
gr.update(visible=False),
|
89 |
gr.update(visible=False),
|
90 |
gr.update(visible=False, open=False),
|
91 |
-
*dropdown_placement
|
92 |
)
|
93 |
model_id2label = ppl.model.config.id2label
|
94 |
-
ds_labels, ds_features = get_labels_and_features_from_dataset(
|
95 |
-
|
|
|
|
|
96 |
# when dataset does not have labels or features
|
97 |
if not isinstance(ds_labels, list) or not isinstance(ds_features, list):
|
98 |
# gr.Warning(CONFIRM_MAPPING_DETAILS_FAIL_RAW)
|
@@ -100,9 +144,9 @@ def check_model_and_show_prediction(model_id, dataset_id, dataset_config, datase
|
|
100 |
gr.update(visible=False),
|
101 |
gr.update(visible=False),
|
102 |
gr.update(visible=False, open=False),
|
103 |
-
*dropdown_placement
|
104 |
)
|
105 |
-
|
106 |
column_mappings = list_labels_and_features_from_dataset(
|
107 |
ds_labels,
|
108 |
ds_features,
|
@@ -111,23 +155,29 @@ def check_model_and_show_prediction(model_id, dataset_id, dataset_config, datase
|
|
111 |
|
112 |
# when labels or features are not aligned
|
113 |
# show manually column mapping
|
114 |
-
if
|
|
|
|
|
|
|
115 |
gr.Warning(CONFIRM_MAPPING_DETAILS_FAIL_RAW)
|
116 |
return (
|
117 |
gr.update(visible=False),
|
118 |
gr.update(visible=False),
|
119 |
gr.update(visible=True, open=True),
|
120 |
-
*column_mappings
|
121 |
)
|
122 |
|
123 |
-
prediction_input, prediction_output = get_example_prediction(
|
|
|
|
|
124 |
return (
|
125 |
gr.update(value=prediction_input, visible=True),
|
126 |
gr.update(value=prediction_output, visible=True),
|
127 |
gr.update(visible=True, open=False),
|
128 |
-
*column_mappings
|
129 |
)
|
130 |
|
|
|
131 |
def try_submit(m_id, d_id, config, split, local, uid):
|
132 |
all_mappings = read_column_mapping(CONFIG_PATH)
|
133 |
|
@@ -139,7 +189,7 @@ def try_submit(m_id, d_id, config, split, local, uid):
|
|
139 |
gr.Warning(CONFIRM_MAPPING_DETAILS_FAIL_RAW)
|
140 |
return (gr.update(interactive=True), gr.update(visible=False))
|
141 |
label_mapping = all_mappings["labels"]
|
142 |
-
|
143 |
if "features" not in all_mappings.keys():
|
144 |
gr.Warning(CONFIRM_MAPPING_DETAILS_FAIL_RAW)
|
145 |
return (gr.update(interactive=True), gr.update(visible=False))
|
@@ -150,32 +200,47 @@ def try_submit(m_id, d_id, config, split, local, uid):
|
|
150 |
command = [
|
151 |
"python",
|
152 |
"cli.py",
|
153 |
-
"--loader",
|
154 |
-
"
|
155 |
-
"--
|
156 |
-
|
157 |
-
"--
|
158 |
-
|
159 |
-
"--
|
160 |
-
|
161 |
-
"--
|
162 |
-
|
163 |
-
"--
|
164 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
165 |
]
|
166 |
|
167 |
eval_str = f"[{m_id}]<{d_id}({config}, {split} set)>"
|
168 |
logging.info(f"Start local evaluation on {eval_str}")
|
169 |
save_job_to_pipe(uid, command, threading.Lock())
|
170 |
-
write_log_to_user_file(
|
|
|
|
|
|
|
171 |
gr.Info(f"Start local evaluation on {eval_str}")
|
172 |
|
173 |
return (
|
174 |
gr.update(interactive=False),
|
175 |
-
gr.update(lines=5, visible=True, interactive=False)
|
|
|
176 |
|
177 |
else:
|
178 |
gr.Info("TODO: Submit task to an endpoint")
|
179 |
-
|
180 |
-
return (gr.update(interactive=True), # Submit button
|
181 |
-
gr.update(visible=False))
|
|
|
1 |
+
import collections
|
|
|
2 |
import json
|
|
|
3 |
import logging
|
4 |
+
import os
|
5 |
import threading
|
6 |
+
|
7 |
import datasets
|
8 |
+
import gradio as gr
|
|
|
9 |
from transformers.pipelines import TextClassificationPipeline
|
10 |
|
11 |
+
from io_utils import (
|
12 |
+
read_column_mapping,
|
13 |
+
save_job_to_pipe,
|
14 |
+
write_column_mapping,
|
15 |
+
write_log_to_user_file,
|
16 |
+
)
|
17 |
+
from text_classification import (
|
18 |
+
check_model,
|
19 |
+
get_example_prediction,
|
20 |
+
get_labels_and_features_from_dataset,
|
21 |
+
)
|
22 |
+
from wordings import CONFIRM_MAPPING_DETAILS_FAIL_RAW
|
23 |
+
|
24 |
MAX_LABELS = 20
|
25 |
MAX_FEATURES = 20
|
26 |
|
27 |
+
HF_REPO_ID = "HF_REPO_ID"
|
28 |
+
HF_SPACE_ID = "SPACE_ID"
|
29 |
+
HF_WRITE_TOKEN = "HF_WRITE_TOKEN"
|
30 |
CONFIG_PATH = "./config.yaml"
|
31 |
|
32 |
+
|
33 |
def check_dataset_and_get_config(dataset_id):
|
34 |
try:
|
35 |
write_column_mapping(None)
|
|
|
39 |
# Dataset may not exist
|
40 |
pass
|
41 |
|
42 |
+
|
43 |
def check_dataset_and_get_split(dataset_id, dataset_config):
|
44 |
try:
|
45 |
splits = list(datasets.load_dataset(dataset_id, dataset_config).keys())
|
|
|
49 |
# gr.Warning(f"Failed to load dataset {dataset_id} with config {dataset_config}: {e}")
|
50 |
pass
|
51 |
|
52 |
+
|
53 |
def write_column_mapping_to_config(dataset_id, dataset_config, dataset_split, *labels):
|
54 |
+
ds_labels, ds_features = get_labels_and_features_from_dataset(
|
55 |
+
dataset_id, dataset_config, dataset_split
|
56 |
+
)
|
57 |
if labels is None:
|
58 |
return
|
59 |
labels = [*labels]
|
|
|
70 |
|
71 |
if "features" not in all_mappings.keys():
|
72 |
all_mappings["features"] = dict()
|
73 |
+
for i, feat in enumerate(labels[MAX_LABELS : (MAX_LABELS + MAX_FEATURES)]):
|
74 |
if feat:
|
75 |
all_mappings["features"][feat] = ds_features[i]
|
76 |
write_column_mapping(all_mappings)
|
77 |
|
78 |
+
|
79 |
def list_labels_and_features_from_dataset(ds_labels, ds_features, model_id2label):
|
80 |
model_labels = list(model_id2label.values())
|
81 |
len_model_labels = len(model_labels)
|
82 |
+
print(model_labels, model_id2label, 3 % len_model_labels)
|
83 |
+
lables = [
|
84 |
+
gr.Dropdown(
|
85 |
+
label=f"{label}",
|
86 |
+
choices=model_labels,
|
87 |
+
value=model_id2label[i % len_model_labels],
|
88 |
+
interactive=True,
|
89 |
+
visible=True,
|
90 |
+
)
|
91 |
+
for i, label in enumerate(ds_labels[:MAX_LABELS])
|
92 |
+
]
|
93 |
lables += [gr.Dropdown(visible=False) for _ in range(MAX_LABELS - len(lables))]
|
94 |
# TODO: Substitute 'text' with more features for zero-shot
|
95 |
+
features = [
|
96 |
+
gr.Dropdown(
|
97 |
+
label=f"{feature}",
|
98 |
+
choices=ds_features,
|
99 |
+
value=ds_features[0],
|
100 |
+
interactive=True,
|
101 |
+
visible=True,
|
102 |
+
)
|
103 |
+
for feature in ["text"]
|
104 |
+
]
|
105 |
+
features += [
|
106 |
+
gr.Dropdown(visible=False) for _ in range(MAX_FEATURES - len(features))
|
107 |
+
]
|
108 |
return lables + features
|
109 |
|
110 |
+
|
111 |
+
def check_model_and_show_prediction(
|
112 |
+
model_id, dataset_id, dataset_config, dataset_split
|
113 |
+
):
|
114 |
ppl = check_model(model_id)
|
115 |
if ppl is None or not isinstance(ppl, TextClassificationPipeline):
|
116 |
gr.Warning("Please check your model.")
|
117 |
return (
|
118 |
gr.update(visible=False),
|
119 |
gr.update(visible=False),
|
120 |
+
*[gr.update(visible=False) for _ in range(MAX_LABELS + MAX_FEATURES)],
|
121 |
)
|
122 |
+
|
123 |
+
dropdown_placement = [
|
124 |
+
gr.Dropdown(visible=False) for _ in range(MAX_LABELS + MAX_FEATURES)
|
125 |
+
]
|
126 |
+
|
127 |
+
if ppl is None: # pipeline not found
|
128 |
gr.Warning("Model not found")
|
129 |
return (
|
130 |
gr.update(visible=False),
|
131 |
gr.update(visible=False),
|
132 |
gr.update(visible=False, open=False),
|
133 |
+
*dropdown_placement,
|
134 |
)
|
135 |
model_id2label = ppl.model.config.id2label
|
136 |
+
ds_labels, ds_features = get_labels_and_features_from_dataset(
|
137 |
+
dataset_id, dataset_config, dataset_split
|
138 |
+
)
|
139 |
+
|
140 |
# when dataset does not have labels or features
|
141 |
if not isinstance(ds_labels, list) or not isinstance(ds_features, list):
|
142 |
# gr.Warning(CONFIRM_MAPPING_DETAILS_FAIL_RAW)
|
|
|
144 |
gr.update(visible=False),
|
145 |
gr.update(visible=False),
|
146 |
gr.update(visible=False, open=False),
|
147 |
+
*dropdown_placement,
|
148 |
)
|
149 |
+
|
150 |
column_mappings = list_labels_and_features_from_dataset(
|
151 |
ds_labels,
|
152 |
ds_features,
|
|
|
155 |
|
156 |
# when labels or features are not aligned
|
157 |
# show manually column mapping
|
158 |
+
if (
|
159 |
+
collections.Counter(model_id2label.values()) != collections.Counter(ds_labels)
|
160 |
+
or ds_features[0] != "text"
|
161 |
+
):
|
162 |
gr.Warning(CONFIRM_MAPPING_DETAILS_FAIL_RAW)
|
163 |
return (
|
164 |
gr.update(visible=False),
|
165 |
gr.update(visible=False),
|
166 |
gr.update(visible=True, open=True),
|
167 |
+
*column_mappings,
|
168 |
)
|
169 |
|
170 |
+
prediction_input, prediction_output = get_example_prediction(
|
171 |
+
ppl, dataset_id, dataset_config, dataset_split
|
172 |
+
)
|
173 |
return (
|
174 |
gr.update(value=prediction_input, visible=True),
|
175 |
gr.update(value=prediction_output, visible=True),
|
176 |
gr.update(visible=True, open=False),
|
177 |
+
*column_mappings,
|
178 |
)
|
179 |
|
180 |
+
|
181 |
def try_submit(m_id, d_id, config, split, local, uid):
|
182 |
all_mappings = read_column_mapping(CONFIG_PATH)
|
183 |
|
|
|
189 |
gr.Warning(CONFIRM_MAPPING_DETAILS_FAIL_RAW)
|
190 |
return (gr.update(interactive=True), gr.update(visible=False))
|
191 |
label_mapping = all_mappings["labels"]
|
192 |
+
|
193 |
if "features" not in all_mappings.keys():
|
194 |
gr.Warning(CONFIRM_MAPPING_DETAILS_FAIL_RAW)
|
195 |
return (gr.update(interactive=True), gr.update(visible=False))
|
|
|
200 |
command = [
|
201 |
"python",
|
202 |
"cli.py",
|
203 |
+
"--loader",
|
204 |
+
"huggingface",
|
205 |
+
"--model",
|
206 |
+
m_id,
|
207 |
+
"--dataset",
|
208 |
+
d_id,
|
209 |
+
"--dataset_config",
|
210 |
+
config,
|
211 |
+
"--dataset_split",
|
212 |
+
split,
|
213 |
+
"--hf_token",
|
214 |
+
os.environ.get(HF_WRITE_TOKEN),
|
215 |
+
"--discussion_repo",
|
216 |
+
os.environ.get(HF_REPO_ID) or os.environ.get(HF_SPACE_ID),
|
217 |
+
"--output_format",
|
218 |
+
"markdown",
|
219 |
+
"--output_portal",
|
220 |
+
"huggingface",
|
221 |
+
"--feature_mapping",
|
222 |
+
json.dumps(feature_mapping),
|
223 |
+
"--label_mapping",
|
224 |
+
json.dumps(label_mapping),
|
225 |
+
"--scan_config",
|
226 |
+
"../config.yaml",
|
227 |
]
|
228 |
|
229 |
eval_str = f"[{m_id}]<{d_id}({config}, {split} set)>"
|
230 |
logging.info(f"Start local evaluation on {eval_str}")
|
231 |
save_job_to_pipe(uid, command, threading.Lock())
|
232 |
+
write_log_to_user_file(
|
233 |
+
uid,
|
234 |
+
f"Start local evaluation on {eval_str}. Please wait for your job to start...\n",
|
235 |
+
)
|
236 |
gr.Info(f"Start local evaluation on {eval_str}")
|
237 |
|
238 |
return (
|
239 |
gr.update(interactive=False),
|
240 |
+
gr.update(lines=5, visible=True, interactive=False),
|
241 |
+
)
|
242 |
|
243 |
else:
|
244 |
gr.Info("TODO: Submit task to an endpoint")
|
245 |
+
|
246 |
+
return (gr.update(interactive=True), gr.update(visible=False)) # Submit button
|
|
validate_queue.py
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import random
|
2 |
+
import time
|
3 |
+
|
4 |
+
import gradio as gr
|
5 |
+
|
6 |
+
|
7 |
+
def sleep_a_while():
|
8 |
+
seconds = random.randint(5, 10)
|
9 |
+
print(f"Working for {seconds} seconds")
|
10 |
+
start = time.time()
|
11 |
+
while start + seconds > time.time():
|
12 |
+
continue
|
13 |
+
return str(seconds)
|
14 |
+
|
15 |
+
|
16 |
+
|
17 |
+
with gr.Blocks() as iface:
|
18 |
+
text = gr.Textbox(label="Slept second")
|
19 |
+
|
20 |
+
run_btn = gr.Button("Run")
|
21 |
+
run_btn.click(sleep_a_while, queue=False, outputs=text, concurrency_limit=1)
|
22 |
+
|
23 |
+
if __name__ == "__main__":
|
24 |
+
iface.queue(max_size=2, default_concurrency_limit=2).launch()
|
wordings.py
CHANGED
@@ -1,22 +1,22 @@
|
|
1 |
-
INTRODUCTION_MD =
|
2 |
<h1 style="text-align: center;">
|
3 |
🐢Giskard Evaluator
|
4 |
</h1>
|
5 |
Welcome to Giskard Evaluator Space! Get your report immediately by simply input your model id and dataset id below. Follow our leads and improve your model in no time.
|
6 |
-
|
7 |
-
CONFIRM_MAPPING_DETAILS_MD =
|
8 |
<h1 style="text-align: center;">
|
9 |
Confirm Pre-processing Details
|
10 |
</h1>
|
11 |
Please confirm the pre-processing details below. Align the column names of your model in the <b>dropdown</b> menu to your dataset's. If you are not sure, please double check your model and dataset.
|
12 |
-
|
13 |
-
CONFIRM_MAPPING_DETAILS_FAIL_MD =
|
14 |
<h1 style="text-align: center;">
|
15 |
Confirm Pre-processing Details
|
16 |
</h1>
|
17 |
Sorry, we cannot align the input/output of your dataset with the model. <b>Pleaser double check your model and dataset.</b>
|
18 |
-
|
19 |
|
20 |
-
CONFIRM_MAPPING_DETAILS_FAIL_RAW=
|
21 |
Sorry, we cannot align the input/output of your dataset with the model. Pleaser double check your model and dataset.
|
22 |
-
|
|
|
1 |
+
INTRODUCTION_MD = """
|
2 |
<h1 style="text-align: center;">
|
3 |
🐢Giskard Evaluator
|
4 |
</h1>
|
5 |
Welcome to Giskard Evaluator Space! Get your report immediately by simply input your model id and dataset id below. Follow our leads and improve your model in no time.
|
6 |
+
"""
|
7 |
+
CONFIRM_MAPPING_DETAILS_MD = """
|
8 |
<h1 style="text-align: center;">
|
9 |
Confirm Pre-processing Details
|
10 |
</h1>
|
11 |
Please confirm the pre-processing details below. Align the column names of your model in the <b>dropdown</b> menu to your dataset's. If you are not sure, please double check your model and dataset.
|
12 |
+
"""
|
13 |
+
CONFIRM_MAPPING_DETAILS_FAIL_MD = """
|
14 |
<h1 style="text-align: center;">
|
15 |
Confirm Pre-processing Details
|
16 |
</h1>
|
17 |
Sorry, we cannot align the input/output of your dataset with the model. <b>Pleaser double check your model and dataset.</b>
|
18 |
+
"""
|
19 |
|
20 |
+
CONFIRM_MAPPING_DETAILS_FAIL_RAW = """
|
21 |
Sorry, we cannot align the input/output of your dataset with the model. Pleaser double check your model and dataset.
|
22 |
+
"""
|