Spaces:
Running
Running
Tested impl
Browse files- Dockerfile +2 -2
- app/main.py +25 -15
Dockerfile
CHANGED
@@ -6,7 +6,7 @@ WORKDIR /app
|
|
6 |
|
7 |
|
8 |
# Create a new environment using mamba with specified packages
|
9 |
-
RUN micromamba install -n base -c conda-forge -c bioconda -y python=3.10 pip biopython
|
10 |
RUN micromamba install -n base -c conda-forge -c bioconda -y nglview tqdm matplotlib pandas
|
11 |
RUN micromamba install -n base -c conda-forge -c bioconda -y openpyxl pyarrow python-box xmlschema seaborn numpy py3Dmol pyranges scipy pyyaml zarr numcodecs
|
12 |
RUN micromamba install -n base -c conda-forge -c bioconda -y pybigwig networkx plotly pysam requests seqlogo MOODS urllib3 pyliftover gprofiler-official pyfaidx
|
@@ -54,4 +54,4 @@ EXPOSE 7681
|
|
54 |
# Set the working directory where your app resides
|
55 |
|
56 |
# Command to run the Gradio app automatically
|
57 |
-
CMD ["python", "app/main.py", "-p", "7681", "-s", "-u", "s3://2023-get-xf2217/
|
|
|
6 |
|
7 |
|
8 |
# Create a new environment using mamba with specified packages
|
9 |
+
RUN micromamba install -n base -c conda-forge -c bioconda -y python=3.10 pip biopython s3fs
|
10 |
RUN micromamba install -n base -c conda-forge -c bioconda -y nglview tqdm matplotlib pandas
|
11 |
RUN micromamba install -n base -c conda-forge -c bioconda -y openpyxl pyarrow python-box xmlschema seaborn numpy py3Dmol pyranges scipy pyyaml zarr numcodecs
|
12 |
RUN micromamba install -n base -c conda-forge -c bioconda -y pybigwig networkx plotly pysam requests seqlogo MOODS urllib3 pyliftover gprofiler-official pyfaidx
|
|
|
54 |
# Set the working directory where your app resides
|
55 |
|
56 |
# Command to run the Gradio app automatically
|
57 |
+
CMD ["python", "app/main.py", "-p", "7681", "-s", "-u", "s3://2023-get-xf2217/get_demo_test_data", "-d", "/data"]
|
app/main.py
CHANGED
@@ -32,12 +32,13 @@ args.add_argument("-d", "--data", type=str, default="None", help="Data directory
|
|
32 |
args = args.parse_args()
|
33 |
|
34 |
GET_CONFIG = load_config(
|
35 |
-
|
36 |
)
|
37 |
GET_CONFIG.celltype.jacob = True
|
38 |
GET_CONFIG.celltype.num_cls = 2
|
39 |
GET_CONFIG.celltype.input = True
|
40 |
GET_CONFIG.celltype.embed = True
|
|
|
41 |
|
42 |
if args.s3_uri: # Use S3 path if exists
|
43 |
GET_CONFIG.s3_uri = args.s3_uri
|
@@ -49,6 +50,12 @@ if args.s3_uri: # Use S3 path if exists
|
|
49 |
f"{args.s3_uri}/Interpretation_all_hg38_allembed_v4_natac/"
|
50 |
)
|
51 |
GET_CONFIG.motif_dir = f"{args.s3_uri}/interpret_natac/motif-clustering"
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
available_celltypes = sorted(
|
53 |
[
|
54 |
cell_type_id_to_name[f.split("/")[-1]]
|
@@ -56,7 +63,12 @@ if args.s3_uri: # Use S3 path if exists
|
|
56 |
]
|
57 |
)
|
58 |
gene_pairs = s3.glob(f"{args.s3_uri}/structures/causal/*")
|
59 |
-
|
|
|
|
|
|
|
|
|
|
|
60 |
GET_CONFIG.celltype.data_dir = (
|
61 |
f"{args.data}/pretrain_human_bingren_shendure_apr2023/fetal_adult/"
|
62 |
)
|
@@ -64,6 +76,12 @@ else:
|
|
64 |
f"{args.data}/Interpretation_all_hg38_allembed_v4_natac/"
|
65 |
)
|
66 |
GET_CONFIG.motif_dir = f"{args.data}/interpret_natac/motif-clustering"
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
available_celltypes = sorted(
|
68 |
[
|
69 |
cell_type_id_to_name[f.split("/")[-1]]
|
@@ -71,19 +89,11 @@ else:
|
|
71 |
]
|
72 |
)
|
73 |
gene_pairs = glob(f"{args.data}/structures/causal/*")
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
)
|
80 |
-
cell_type_annot = pd.read_csv(
|
81 |
-
GET_CONFIG.celltype.data_dir.split("fetal_adult")[0]
|
82 |
-
+ "data/cell_type_pretrain_human_bingren_shendure_apr2023.txt"
|
83 |
-
)
|
84 |
-
cell_type_id_to_name = dict(zip(cell_type_annot["id"], cell_type_annot["celltype"]))
|
85 |
-
cell_type_name_to_id = dict(zip(cell_type_annot["celltype"], cell_type_annot["id"]))
|
86 |
-
plt.rcParams["figure.dpi"] = 100
|
87 |
|
88 |
|
89 |
def visualize_AF2(tf_pair, a):
|
|
|
32 |
args = args.parse_args()
|
33 |
|
34 |
GET_CONFIG = load_config(
|
35 |
+
"/app/modules/atac_rna_data_processing/atac_rna_data_processing/config/GET"
|
36 |
)
|
37 |
GET_CONFIG.celltype.jacob = True
|
38 |
GET_CONFIG.celltype.num_cls = 2
|
39 |
GET_CONFIG.celltype.input = True
|
40 |
GET_CONFIG.celltype.embed = True
|
41 |
+
plt.rcParams["figure.dpi"] = 100
|
42 |
|
43 |
if args.s3_uri: # Use S3 path if exists
|
44 |
GET_CONFIG.s3_uri = args.s3_uri
|
|
|
50 |
f"{args.s3_uri}/Interpretation_all_hg38_allembed_v4_natac/"
|
51 |
)
|
52 |
GET_CONFIG.motif_dir = f"{args.s3_uri}/interpret_natac/motif-clustering"
|
53 |
+
cell_type_annot = pd.read_csv(
|
54 |
+
GET_CONFIG.celltype.data_dir.split("fetal_adult")[0]
|
55 |
+
+ "data/cell_type_pretrain_human_bingren_shendure_apr2023.txt"
|
56 |
+
)
|
57 |
+
cell_type_id_to_name = dict(zip(cell_type_annot["id"], cell_type_annot["celltype"]))
|
58 |
+
cell_type_name_to_id = dict(zip(cell_type_annot["celltype"], cell_type_annot["id"]))
|
59 |
available_celltypes = sorted(
|
60 |
[
|
61 |
cell_type_id_to_name[f.split("/")[-1]]
|
|
|
63 |
]
|
64 |
)
|
65 |
gene_pairs = s3.glob(f"{args.s3_uri}/structures/causal/*")
|
66 |
+
gene_pairs = [os.path.basename(pair) for pair in gene_pairs]
|
67 |
+
motif = NrMotifV1.load_from_pickle(
|
68 |
+
pkg_resources.resource_filename("atac_rna_data_processing", "data/NrMotifV1.pkl"),
|
69 |
+
GET_CONFIG.motif_dir,
|
70 |
+
)
|
71 |
+
else: # Run with local data
|
72 |
GET_CONFIG.celltype.data_dir = (
|
73 |
f"{args.data}/pretrain_human_bingren_shendure_apr2023/fetal_adult/"
|
74 |
)
|
|
|
76 |
f"{args.data}/Interpretation_all_hg38_allembed_v4_natac/"
|
77 |
)
|
78 |
GET_CONFIG.motif_dir = f"{args.data}/interpret_natac/motif-clustering"
|
79 |
+
cell_type_annot = pd.read_csv(
|
80 |
+
GET_CONFIG.celltype.data_dir.split("fetal_adult")[0]
|
81 |
+
+ "data/cell_type_pretrain_human_bingren_shendure_apr2023.txt"
|
82 |
+
)
|
83 |
+
cell_type_id_to_name = dict(zip(cell_type_annot["id"], cell_type_annot["celltype"]))
|
84 |
+
cell_type_name_to_id = dict(zip(cell_type_annot["celltype"], cell_type_annot["id"]))
|
85 |
available_celltypes = sorted(
|
86 |
[
|
87 |
cell_type_id_to_name[f.split("/")[-1]]
|
|
|
89 |
]
|
90 |
)
|
91 |
gene_pairs = glob(f"{args.data}/structures/causal/*")
|
92 |
+
gene_pairs = [os.path.basename(pair) for pair in gene_pairs]
|
93 |
+
motif = NrMotifV1.load_from_pickle(
|
94 |
+
pkg_resources.resource_filename("atac_rna_data_processing", "data/NrMotifV1.pkl"),
|
95 |
+
GET_CONFIG.motif_dir,
|
96 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
|
98 |
|
99 |
def visualize_AF2(tf_pair, a):
|