Spaces:
Runtime error
Runtime error
์ง์,๊ฒ์ ๊ฒฐ๊ณผ,flag,username,timestamp | |
"๋ชธ์ ๋ฐ์ ์ด ์๋ค๋ฉด ์ด๋ค ์ง๋ณ์ผ ๊ฐ๋ฅ์ฑ์ด ์์๊น? | |
","๋ฌธ์ 1 | |
์ ํํ ์์ธ์ ๋ฐํ์ ธ ์์ง ์์ผ๋ ์ ์ ์ , ํ๊ฒฝ์ ์์ธ์ด ๋ณตํฉ๋์ด ์์ฉํ๋ ๊ฒ์ผ๋ก ์ง์๋๋ค. ์ด ์ง๋ณ์ ์๋ ๊ฐ์กฑ ๊ตฌ์ฑ์์ด ์๋ค๋ฉด ๋ณธ์ธ์๊ฒ๋ ์ํฅ์ ๋ฐ์ ๊ฐ๋ฅ์ฑ์ด ์๋ค. ์ํฅ์ ๋ฐ์ ์ผ๋์ฑ ์๋ฅ์ด๊ฐ ์๋ค๋ฉด 30%์ ํ๋ฅ ๋ก ๋ค๋ฅธ ์๋ฅ์ด๋ ์ด ์ง๋ณ์ ๊ฐ์ง๊ณ ์์ ๊ฐ๋ฅ์ฑ์ด ์๋ค. ์ด ์ง๋ณ์ ์คํธ๋ ์ค, ๊ฐ์ผ, ์ถ์ ์์ ๋ฐ๋ณํ ์ ์๋ค. ์ 1ํ ๋น๋จ๋ณ, ๋ฅ๋งํฐ์ค ๊ด์ ์ผ๊ณผ ๊ฐ์ ์๊ฐ๋ฉด์ญ ์งํ์ ๊ฐ์ง ํ์๋ค์ด ์ํฅ์ ๋ฐ์ ๊ฐ๋ฅ์ฑ์ด ์๋ค. ํก์ฐ์ ์ด ์ง๋ณ์ ์ํ์ฑ์ ๋์ด๋ฉฐ ์๊ตฌ ๋ฌธ์ ๋ฅผ ๋ ์ ํ์ํฌ ์ ์๋ค. ์ด ์ง๋ณ์ TSI๋ผ๋ ํญ์ฒด์์ ๋น๋กฏํ๋ฉฐ ์ด๋ ๊ฐ์์ ์๊ทน ํธ๋ฅด๋ชฌ๊ณผ ์ํฅ๋๊ฐ ๋น์ทํ๋ค. ์ด๋ฌํ ํญ์ฒด๋ค์ ๊ฐ์์์ด ๊ฐ์์ ํธ๋ฅด๋ชฌ์ ๊ณผ๋ํ๊ฒ ์์ฐํ๋๋ก ์ ๋ํ๋ค. ์ง๋ณ ํ์ธ์ ์ํ ํ์ก ๊ฒ์ฌ, ๋ฐฉ์ฌ์ฑ ์์ค๋ ์ญ์ทจ๋ฅผ ํตํ ์ฆ์์ ๊ธฐ๋ฐํ์ฌ ์ง๋จํ๋ค. | |
๋ฌธ์ 2 | |
1603๋ 37์ธ์ ๋์ด๋ก ์ฌ๋งํ์๊ณ , ์๋ค ์ํ๋ฉํธ 1์ธ๊ฐ ์์๋ฅผ ์ด์ด๋ฐ์๋ค. ์ฌ๋ง ์์ธ์ ์ ํํ๊ฒ ์๋ ค์ ธ ์์ง ์์ผ๋ฉฐ, ์์ฐ์ฌ๋ ์ง๋ณ์ผ ๊ฐ๋ฅ์ฑ์ด ์๋ค. | |
๋ฌธ์ 3 | |
์ด์์ ์ฐ๊ตฌ ๊ฒฐ๊ณผ๋ค์ ์ค์ง ๊ฐ์ค ํ์ฑ ๋ฐ ๊ฐ์ ์์ฑ์ด ์กด์ฌํ์ง ์์์ ๋ฐํ์คฌ์ ๋ฟ ์ง๊ตฌ๋ ๊ธ์ฑ์ฒ๋ผ ์์ ํ์ฑ์ด ์กด์ฌํ ๊ฐ๋ฅ์ฑ์ ์์ง ๋จ์ ์๋ค. ๋ง์ฝ ๋จ๊ฑฐ์ด ๋ชฉ์ฑ์ด ํญ์ฑ ๊ฐ๊น์ด ์์๋ค๋ฉด ์ด๋ค์ ํญ์ฑ ๊ทผ์ฒ๋ฅผ ๋๋ ์ง๊ตฌํ ํ์ฑ์ ๊ถค๋๋ฅผ ๋ง๊ฐ๋จ๋ ค ์๋ช ์ฒด ๋ฐ์ ๊ฐ๋ฅ์ฑ์ ๋ฎ์ท์ ๊ฒ์ด๋ค. ๋ฐ๋ผ์ ๊ฐ์ค ํ์ฑ์ด ์๋ค๋ ๊ฒ์ ์ง๊ตฌ ๋น์ทํ ํ์ฑ์ด ์กด์ฌํ ๊ฐ๋ฅ์ฑ์ ๋์ฌ ์ฃผ๋ ์ฌ์ค์ด ๋๋ค. ํต์์ ์ผ๋ก ๋ฐํ์ง ์ฐ๊ตฌ์ ๋ฐ๋ฅด๋ฉด ์ค์์ ํจ๋์ด ๋์ ๋ณ ์ฃผ์์๋ ํ์ฑ์ด ์์ ํ๋ฅ ์ด ๋๊ณ ๊ทธ๋ ์ง ์์ ๋ณ ์ฃผ์์๋ ํ์ฑ์ด ์์ ํ๋ฅ ์ด ์ ์ ๊ฒ์ผ๋ก ๋ฐํ์ก๋ค. ๋๊บผ์ด ๋จผ์ง ์๋ฐ์ด ์๋ค๋ ์ฌ์ค์ ํญ์ฑ ๊ฐ๊น์ด์ ์์ ํ์ฑ์ด ์กด์ฌํ ๊ฐ๋ฅ์ฑ์ ๋์ด๋ ๊ฒ์ ์ฌ์ค์ด๋ค. ๊ทธ๋ฌ๋ ์ด๋ ๋์์ ๊ทธ ์์ ํ์ฑ์ด ํญ๊ฒฉ์ ๋ฐ์ ๊ฐ๋ฅ์ฑ์ด ๋์์ ์๋ ค์ฃผ๋ ์ฌ์ค์ด๊ธฐ๋ ํ๋ค. ๋ง์ฝ ํ์ฑ์ด ๋ฐ๊ฒฌ๋๋ค๋ฉด ์ดํ์ ์ฐ๊ตฌ ๋ฐฉํฅ์ ์ด ํ์ฑ์ ์๋ช ์ฒด๊ฐ ์ด ์ ์๋ ๋ฌผ๊ณผ ๋๊ธฐ๊ฐ ์กด์ฌํ๋์ง๋ฅผ ์ถฉ๋ถํ ํด์๋์ ๋ง์๊ฒฝ์ ํตํด ์์๋ด๋ ๊ฒ์ด ๋๋ค. ์ง๊ตฌ์ ์ฐ์๊ฐ ์๋ช ์ฒด ์กด์ฌ๋ฅผ ๋ํ๋ด๋ ์ฒ๋๊ฐ ๋๋ ๊ฒ์ฒ๋ผ ๋ฌด๊ธฐ์ฑ์ ๋๊ธฐ ์กฐ์ฑ์ ์์ ์๋ช ์ฒด๊ฐ ์กด์ฌํจ์ ๋ํ๋ด๋ ์งํ๊ฐ ๋ ์ ์๋ค. | |
๋ฌธ์ 4 | |
์น๋งค๋ ๋ฐฑํ๋ณ, ๋น๋จ, ํํจ์จ๋ณ๊ณผ ๊ฐ์ ๋์น๋ณ๋ค ์ค์๋ ์ธํฌ์ ๋ณ์ด๋ ์ฌ๋ฉธ๋ก ์ธํ ์ง๋ณ์ด ๋๋ค์์ด๋ค. ์ด๋ฌํ ํดํ์ฑ ์ง๋ณ์ ๊ฒฝ์ฐ ์ธํฌ ์น๋ฃ๋ฒ์ ์ด์ฉํด์ฌ ์น๋ฃํ๋ ๊ฒฝ์ฐ๊ฐ ๋ง๋ค. ํน์ด์ ์ฃผ์์๋ค์ ๋ฐ๋ฅด๋ฉด ์ค๊ธฐ์ธํฌ ์ฐ๊ตฌ์ ๊ฐ์ ์ธํฌ ์ฐ๊ตฌ๋ ์๋ช ๊ณตํ ์ฐ๊ตฌ์ ์ผ๋ถ๋ถ์ด๋ฉฐ ์ ์ ์ DNA ์ง๋๋ฅผ ์๋ฒฝํ๊ฒ ๊ตฌ์กฐํํ ์ ์๋ค๋ฉด ์ธํฌ๋ถํ ์น๋ฃ ํน์ ์ธํฌ๋ณต์ ์น๋ฃ๋ฅผ ํตํด ํ์ ์์ ์ DNA๋ฅผ ์ง๋๊ณ ํ ๋ก๋ฏธ์ด๊ฐ ์ฐ์ฅ๋ ์ธํฌ๋ฅผ ๊ณต๊ธํ ์ ์์ ๊ฒ์ด๋ผ๊ณ ๋ณธ๋ค. ์์ปจ๋ฐ ํ์ฌ ๋น๋จ๋ณ ์น๋ฃ์ ์ฐ์ด๋ ๊ฑฐ๋ถ๋ฐ์ ์ ์ด์ ๊ฐ ์ํํ ๋ถ์์ฉ์ ์ผ์ผํฌ ๊ฐ๋ฅ์ฑ์ด ์๋ ๋ฐ๋ฉด ์ด๋ฌํ ์ธํฌ ์น๋ฃ๋ ๋ถ์์ฉ ๊ฐ๋ฅ์ฑ์ ๊ธ๊ฒฉํ ๋ฎ์ถ ์ ์๋ค. ์ด๋ฌํ ์ธํฌ ์น๋ฃ๋ ๋จ์ํ ๋์น๋ณ์ ์น๋ฃ์๋ง ๊ทธ์น๋ ๊ฒ์ด ์๋๋ผ, ๊ต์ฐจ๋ถํ ๊ธฐ์ ์ ์ด์ฉํ ์๋ก์ด ์ ์ฒด ๊ธฐ๊ด์ผ๋ก์ ๊ต์ฒด๋ฅผ ๊ฐ๋ฅํ๊ฒ ํ๋ค. | |
๋ฌธ์ 5 | |
์ปดํจํฐ์ ์ํ ์๋ฎฌ๋ ์ด์ ์๋, ๋ณด์ด๋๋ก ๋ถ๋ฆฌ๋ ํ์๋ ๋ฒ๊ทธ๊ฐ ์๊ณ , ๋ด๋ถ๋ก๋ถํฐ๋ ์๋ ๊ฒฝ์ฐ๊ฐ ์์ ์ง๋ ๋ชจ๋ฅด๋ค. ๊ทธ๋ฌํ ๊ฒ์ ์ฐพ์๋ด ๊ฒ์ฆํ ์ ์๋ค๋ฉด, ๊ฑฐ๊ธฐ์ ๋ฐ๋ผ ๋ชจ์ํ์ค์ ๋ด๋ถ์ ์๋ ๊ฒ์ ์ฆ๋ช ํ ์ ์์ ๊ฐ๋ฅ์ฑ์ด ์๋ค. ๊ทธ๋ฌ๋, ๋ฌผ๋ฆฌ ๋ฒ์น์ ๋ฐํ๋ ์ผ์, ๊ทธ ๋ฐ์๋ ์ค๋ช ํ ์ ์๋ ๊ฐ์ค์ ์๊ฐํ ์ ์๋ค(์ ๋ฑ). ์ํ ใ๋งคํธ๋ฆญ์คใ๋ก ๊ทธ๋ ค์ง ๊ฒ์ฒ๋ผ, ๊ธฐ์๊ฐ ๋ฑ์ ์ผ์์ ์ธ ๊ธฐ๋ฌํ ์ฒดํ๋ ์ด๋ ํ ๋ฒ๊ทธ๋ก์ ์ค๋ช ํ ์ ์์ ๊ฐ๋ฅ์ฑ์ด ์๋ค. | |
๋ฌธ์ 6 | |
์๋ฅผ ๋ค๋ฉด ๋๊ธฐ๊ฐ ์๋ ์ด๋ค ํ์ฑ ๊น์ ๋จ์ธต ์ ๊ทธ๋์ง ๊ณณ์ด๋ ํ์ฐ ๋๊ตด ์์ ์ํ๊ณ๊ฐ ํ์ฑ๋์ด ์์ ๊ฐ๋ฅ์ฑ์ด ์๋ค. ์ ๋ช ํ๋ ์ฒ๋ฌธํ์ ์นผ ์ธ์ด๊ฑด์ ์ด ๊ฐ๋ ์ ํ์๊ณ์ ์ ์ฉํ์ฌ, 1976๋ ๋ ผ๋ฌธ์ ํตํด ๋ชฉ์ฑ์ ๋๊ธฐ ์์ธต๋ถ์ ์ ๊ธฐ์ฒด๊ฐ ์ด๊ณ ์์ ๊ฐ๋ฅ์ฑ์ ํผ๋ ฅํ๋ค. ๊ทธ๋ฌ๋ ๋ชฉ์ฑ์๋ ๋ฑ๋ฑํ ํ๋ฉด์ด ์๊ธฐ ๋๋ฌธ์ ์๋ช ์ฒด๊ฐ ์กด์ฌํ ๊ฐ๋ฅ์ฑ์ ๊ฑฐ์ ์๋ค. | |
๋ฌธ์ 7 | |
๋๋ฆฌ ์๋ ค์ ธ ์๋ค๋ ์ฌ์ค์ด ๋ฐ๋์ ์ฐธ์์ ๋ณด์ฆํ๋ ๊ฒ์ ์๋๋ฏ๋ก ์ด๋ฐ ์ฃผ์ฅ์ ๋ ผ๋ฆฌ์ ์ผ๋ก ์ค๋ฅ์ด๋ค. ๊ฐ์ธ์ ์ ๋ ์ด ์๋ชป๋์ด ์์ ๊ฐ๋ฅ์ฑ์ด ์๋ค๋ฉด ๋ค์์ ์ธ๊ฐ์ ์ ๋ ๋ ์๋ชป๋์ด ์์ ๊ฐ๋ฅ์ฑ์ด ์๋ค. ์๋ฅผ ๋ค๋ฉด, 75%์ ์ฌ๋์ด A๋ผ๊ณ ๋๋ตํ๋ค๊ณ ํด๋ 25%์ ํ๋ฅ ๋ก A๊ฐ ์๋ ๊ฐ๋ฅ์ฑ๋ ์๋ค. ์ด ํ๋ฅ ์ด ์ด๋ป๊ฒ ๋๋ ๋ค์๊ฐ ์ณ๋ค๋ ๊ฒ์ ๋ ผ๋ฆฌ์ ์ด๋ผ๊ณ ํ ์ ์๋ค. ๋ง์ฝ ๋ง์ฅ์ผ์น๋ผ๊ณ ํด๋, ํ๋ณธ์ ์๊ฐ ๋ถ์ถฉ๋ถํ ์ง๋ ๋ชจ๋ฅด๊ณ , ํน์ ๊ทธ ์ฌ๋๋ค์ด ๋ชจ๋ฅด๋ ์ฌ์ค์ด ์กด์ฌํ๊ณ ์์ด์ ๊ทธ ์ฌ์ค์ ์๋ฉด ๊ฒฐ๊ณผ๊ฐ ๋ฐ๋์ง๋ ๋ชจ๋ฅธ๋ค. | |
๋ฌธ์ 8 | |
""(a and b)""์ ๊ฐ์ ๋ ผ๋ฆฌ์์ ๊ณ์ฐํ๋ค๊ณ ํ๋ฉด ""a""ํญ์ด ๊ฑฐ์ง์ธ ๊ฒฝ์ฐ์, ""b""ํญ์ ๊ณ์ฐํ์ง ์์๋ ์ ์ฒด ์์ ๋ต์ ์ ์ ์๋ค. ""(a or b)""์์ ""a""ํญ์ด ์ฐธ์ธ ๊ฒฝ์ฐ์๋ ๋ง์ฐฌ๊ฐ์ง์ด๋ค. ์ฌ๊ธฐ์ ํญ์ด ๋ณต์กํ ์์ด๋ฉด ์ด์ ์ด ๋ง๊ณ , ์์์ ๊ฒฐ๊ณผ๊ฐ ์ฐธ์ด๋ ๊ฑฐ์ง์ผ ๊ฐ๋ฅ์ฑ๊ณผ ๊ณ์ฐ์ ๋น์ฉ์ ๋ฐ๋ผ ์ด๋ค ํญ์ด ๋จผ์ ๊ณ์ฐ๋์ด์ผ ์ข์์ง ์ ์ ์๋ค. ๋ฐ๋ผ์ ""(a or b or c)""์ ๊ฐ์ ์์์ ""a""ํญ์ด ์ฐธ๊ฐ์ ๊ฐ์ง ๊ฐ๋ฅ์ฑ์ด ๋ง๋ค๋ฉด, ์ ์ฒด ์์ ์ฝ๊ฒ ๊ณ์ฐํ ์ ์๋ค. ์ด๋ฐ ๊ฐ๋ฅ์ฑ์ ๋ณด์ฅํ๊ธฐ ์ํด, ์ปดํ์ผ๋ฌ๋ ๋ ๊ณ์ฐํด์ผ ํ ๊ฒ์ธ์ง, ๋ค๋ฅธ ํญ์ ์ง๋ฆ๊ธธ ๊ณ์ฐ ํด์ผ ํ ๊ฒ์ธ์ง๋ฅผ ๊ฒ์ฌํ๊ธฐ๋ ํ๋ค. ์ด๋ฐ ๊ฒ์ฌ๋ ๊ณ์ฐ์ ์ค์ด๋ ๊ฒ์ ์คํจํ ๊ฒฝ์ฐ๋ ๊ผญ ํ์ํ ๊ฒฝ์ฐ ๋ฌด์กฐ๊ฑด ์ ์ฒด ์์ ๊ณ์ฐํด์ผ ํ ๋ ์๊ฐ์ด ๋ ๋ง์ด ๊ฑธ๋ฆฌ๊ฒ ๋๋ค. | |
๋ฌธ์ 9 | |
์๋ฌผํ์ ์ผ๋ก๋ ์ธ๊ฐ์ ๋์ ํ์ํ ์ ์ ์ ๋ณด๋ฅผ ๊ฐ์ง๋ ์ธ๊ณต์ ์ธ ๊ฒ๋์ ์ ๋นํ ์์ฃผ์ ์ธํฌ์ ์ง๋ฃ๋ ๊ฒ์ผ๋ก ์ธ๊ณต์ ์ผ๋ก ์๋ช ์ ๋ง๋๋ ๊ฒ๋ ๊ฐ๋ฅํ ์ง๋ ๋ชจ๋ฅธ๋ค๊ณ ์๊ฐ๋๋ฉฐ, ๊ทธ๋ฌํ ์ธ๊ณต์๋ช ์ฒด๋ ์์์ ๊ฐ์ง ๊ฐ๋ฅ์ฑ์ด ๋๋ค. ๊ทธ๋ ์ง๋ง ๊ทธ ์๋ช ์ฒด ์์ ์ด๋ค ์์ฑ์ด ์์์ ๋ณ๋ ๊ฒ์ผ๊น? ๋น์ทํ ๊ฒ์ ๋น์๋ฌผํ์ ์ธ ๋ถํ์์ ๋ง๋ค ์ ์๋ ๊ฒ์ธ์ง? ์ปดํจํฐ๋ฅผ ์ค๊ณํ๊ธฐ ์ํ ๊ธฐ์ ๋ก ๊ทธ๋ฌํ ์์์ฒด๋ฅผ ๋ณ์ ์ ์์๊น? ๊ทธ๋ฌํ ํ์๋ ์ค๋ฆฌ์ ์ผ๋ก ๋ฌธ์ ์์๊น?์ ๊ฐ์ ์ฌ๋ฌ ๋ฌธ์ ๋ฅผ ์๊ณ ์๋ค. | |
๋ฌธ์ 10 | |
3๋ถ ๋ฆฌ๊ทธ",,,2023-06-16 00:57:35.174375 | |
"๋ชจ๋ธ ๊ฒฝ๋ํ ๋ฐ ์ต์ ํ์ ๊ด๋ จํ์ฌ Netspresso bot์๊ฒ ๋ฌผ์ด๋ณด์ธ์. | |
์๋ฅผ๋ค์ด | |
- Why do I need to use Netspresso? | |
- Summarize how to compress the model with netspresso. | |
- Tell me what the pruning is. | |
- What kinds of hardware can I use with this toolkit? | |
- Can I use YOLOv8 with this tool? If so, tell me the examples.","1. Why do I need to use Netspresso? | |
Netspresso is a machine learning pipeline that provides tools and methods for model compression and optimization. By using Netspresso, you can reduce the size and computational cost of your models, making them more efficient for deployment on resource-constrained devices. It also allows you to fine-tune and optimize your models for better performance. Overall, Netspresso helps you achieve lightweight and optimized models for real-time applications. | |
2. Summarize how to compress the model with Netspresso. | |
To compress a model with Netspresso, you can follow these steps: | |
- Step 1: Prepare your model. | |
- Step 2: Upload your model to Netspresso. | |
- Step 3: Choose the compression method (e.g., structured pruning, filter decomposition). | |
- Step 4: Configure the compression settings (e.g., pruning ratio, compression algorithm). | |
- Step 5: Start the compression process. | |
- Step 6: Check the compression result and download the compressed model. | |
3. Tell me what pruning is. | |
Pruning is a model compression technique that involves removing unnecessary parameters or structures from a complex model to make it more compact and efficient. In the context of Netspresso, pruning can be done using structured pruning, which removes entire neurons, filters, or channels from the model. This results in a simplified model that can be deployed without any specific hardware or software requirements for acceleration. | |
4. What kinds of hardware can I use with this toolkit? | |
Netspresso supports various hardware platforms for model deployment. Some of the supported hardware includes NVIDIA Jetson family devices, which can be used with TensorRT for accelerated inference. Other supported platforms include TensorFlow Lite and OpenVINO, which provide optimization for different hardware architectures. The specific hardware compatibility may depend on the compression method and the target framework used in Netspresso. | |
5. Can I use YOLOv8 with this tool? If so, tell me the examples. | |
Yes, you can use YOLOv8 with Netspresso for model compression and optimization. YOLOv8 is a popular object detection model, and Netspresso provides support for object detection models. You can follow the steps in the Netspresso documentation to prepare, upload, compress, and optimize your YOLOv8 model using the available methods and tools in Netspresso. The documentation provides examples and guidelines for using Netspresso with different models, including YOLOv8.","Source 0 | |
Step 4: Package model (beta) | |
Jump to ContentDocumentationHomeDocumentationv1.3.0DocumentationLog InLog InMoon (Dark Mode)Sun (Light Mode)v1.3.0HomeDocumentationSearchINTRODUCTIONWelcomeWhat is NetsPresso?Machine Learning Pipeline with NetsPressoAdvantages of NetsPressoBENCHMARKSModel Searcher- Object DetectionModel Compressor- Image Classification- Object Detection- Semantic Segmentation- Super ResolutionUSE CASESFree People Detection ModelsFree Vehicle Detection ModelsNETSPRESSO MODEL SEARCHERFeatures | |
1. Go to Package page | |
Select New package at the drop-down menu that appears when you click Download button. | |
2. Package the model | |
Enter the package name and select a base model to package. | |
Please note that the package name will be the library name and the name cannot be changed after packaging. | |
You can include pre/post processing codes (.py) with the model for the package (optional). | |
Download the pre/post processing code example and modify for your use cases. | |
3. Download package file and run the package | |
Packaged file will be automatically downloaded. | |
To run the package, use the code written below. {package_name} must be changed to your package name. | |
Pythonfrom np_{package_name}.models.model import NPModel | |
NPModel.initialize(num_threads=1) | |
npmodel = NPModel() | |
image_path = ""./test.jpg"" | |
print(npmodel.run(image_path)) | |
NPModel.finalize() | |
Updated about 1 month ago Table of Contents | |
1. Go to Package page | |
2. Package the model | |
3. Download package file and run the package | |
Source 1 | |
Step 3: Convert model (beta) | |
Jump to ContentDocumentationHomeDocumentationv1.3.0DocumentationLog InLog InMoon (Dark Mode)Sun (Light Mode)v1.3.0HomeDocumentationSearchINTRODUCTIONWelcomeWhat is NetsPresso?Machine Learning Pipeline with NetsPressoAdvantages of NetsPressoBENCHMARKSModel Searcher- Object DetectionModel Compressor- Image Classification- Object Detection- Semantic Segmentation- Super ResolutionUSE CASESFree People Detection ModelsFree Vehicle Detection ModelsNETSPRESSO MODEL SEARCHERFeatures | |
1. Go to Convert page | |
Click the Convert button on Models page. | |
2. Covert model | |
Enter the name and memo for the converted model. Select a base model to be converted and the target hardware to benchmark the model. | |
Depending on the framework of the base model, the options available for converting are different. | |
Models built with Model Searcher โ TensorRT, TensorFlow Lite, OpenVINO | |
Custom models | |
ONNX โ TensorRT, TensorFlow Lite, OpenVINO | |
Click the Start converting button to convert the model. (Converting for the NVIDIA Jetson family (TensorRT) may take up to 1 hour.) | |
3. Check the converting result | |
Converted model will be displayed on the Models page with performance benchmarks on the selected target hardware.Updated 6 months ago Table of Contents | |
1. Go to Convert page | |
2. Covert model | |
3. Check the converting result | |
Source 2 | |
Method: Structured Pruning | |
Jump to ContentDocumentationHomeDocumentationv1.3.0DocumentationLog InLog InMoon (Dark Mode)Sun (Light Mode)v1.3.0HomeDocumentationSearchINTRODUCTIONWelcomeWhat is NetsPresso?Machine Learning Pipeline with NetsPressoAdvantages of NetsPressoBENCHMARKSModel Searcher- Object DetectionModel Compressor- Image Classification- Object Detection- Semantic Segmentation- Super ResolutionUSE CASESFree People Detection ModelsFree Vehicle Detection ModelsNETSPRESSO MODEL SEARCHERFeatures | |
The goal of model compression is to achieve a model that is simplified from the original without performance deterioration. By compressing the large model, the user can reduce the storage and computational cost and allow to use in real-time applications. | |
NetsPresso supports the following compression methods. | |
Structured Pruning | |
Filter Decomposition | |
This page describes for Structured Pruning. | |
What is ""Pruning""? | |
Pruning is the process of removing individual or groups of parameters from a complex model to make it faster and more compact. This compressing procedure is divided into unstructured pruning and structured pruning by the pruning objects. | |
Unstructured Pruning | |
: Removes individual parameters and returns a sparse model, which requires an additional device to be accelerated. | |
Structured Pruning | |
: Removes entire neurons, filters, or channels and returns a model, which does not require any particular hardware or software to be accelerated. | |
The goal of pruning is to reduce the computational resources and accelerate the model by removing unnecessary filters (Model Compressor only supports structured pruning. Unstructured pruning will be published in near future.). | |
ย ย However, the fine-tuning process is necessary to compensate for the loss of accuracy. | |
Structured Pruning | |
Supported functions | |
Pruning in Model Compressor provides two pruning functions (Pruning by Channel Index / Criteria) and one recommendation (SLAMP) to fulfill the user's demand on model compression. | |
Pruning by Channel Index | |
ย ย Removes the filters that a user wants to. If the selected filters are redundant or less important, it will return a better performing model. | |
Pruning by Criteria | |
L2 Norm | |
: L2-Norm is used to represent the importance of the corresponding filter. In other words, this method prunes filters based on the magnitude of weights. | |
Nuclear Norm | |
: The nuclear norm is the sum of the singular values representing the energy. It computes the nuclear norm on the feature map to determine the filter's relevance. For this reason, a portion of the dataset is needed. For more detail, please refer to the following paper. | |
Seul-Ki Yeom, Kyung-Hwan Shim, and Jee-Hyun Hwang. Toward compact deep neural networks via energy-aware pruning. arXiv preprint, 2021. | |
Geometric Median | |
: Geometric Median is used to measure the redundancy of the corresponding filter and remove redundant filters. For more detail, please refer to the following paper. | |
Yang He, Ping Liu, Ziwei Wang, Zhilan Hu, and Yi Yang. Filter pruning via geometric median for deep convolutional neural networks acceleration. In CVPR, 2019. | |
Normalization | |
The distribution and magnitude of the layers are varied, it is vital to compare those different distributions from the same perspective. For this reason, all of the criterion values are normalized by layer as follows. | |
""Recommendation"" in Model Compressor | |
ย ย The ""Recommendation"" enables a so-called global pruning, which allocates the pruning ratio for each layer at ease. Current version only supports SLAMP. | |
SLAMP (Structured Layer-adaptive Sparsity for the Magnitude-based Pruning) | |
SLAMP is inspired by the ""Layer-adaptive Sparsity for the Magnitude-based Pruning"" from ICLR 2021, which is called LAMP. | |
Layer-Adaptive sparsity for the Magnitude-based Pruning (LAMP) is an unstructured pruning method, but here, it is modified and developed to measure the layer-wise importance for the Structured pruning. | |
Normalization function | |
Following normalization function is adopted into the above criteria value. | |
What you can do with Model Compressor | |
Choose one of ""Pruning by Channel Index"" or ""Pruning by Criteria"" by the purpose of the user. | |
""Pruning by Channel Index"" is recommended for the expert, who already knows which filter is unnecessary to solve the issue. | |
""Pruning by Criteria"" is recommended for the user who wants to prune certain amounts of ratio on specific layers or beginner of the model compression. | |
To use ""Pruning by Channel Index"" | |
Check ""Pruning by Channel Index"". | |
Check the layers to be pruned. | |
Insert the filter index to be pruned (ex. 105, 8, 9, 11-13). | |
To use ""Pruning by Criteria"". | |
Check one of the criteria (ex. L2-Norm) to calculate the importance score of each filter. | |
Prune specific layers with a certain amount of ratio. | |
Check the layers to be pruned. | |
Insert the amounts of the ratio to be pruned (ex. 0.2). | |
Compress whole layers automatically for the given amounts of ratio. | |
Press ""Recommendation"" and insert the amounts of the ratio (ex. 0.8) to compress the model. | |
Verification of the Structured Pruning | |
Pruning in Model Compressor allows to remove the specific filters and preserve the previous knowledge. To verify the pruning method in Model Compressor, we assess the categorical accuracy of the returned compressed model and its fine-tuned model. | |
Cifar100 Accuracy of the Compressed Model and Fine-tuned Model | |
The compressed models are compressed by the following strategies: L2Norm, SLAMP, intersection. (Original models are from here) | |
The dashed and solid lines in the above image indicate the compressed model from Model Compressor and the model after fine-tuning, respectively, for the given pruning ratio. | |
๐งNot Supported Layers | |
Group convolutional layer is currently not supported and will be updated in the near future. | |
Updated 5 months ago Table of Contents | |
Model Compression | |
What is ""Pruning""? | |
Structured Pruning | |
Supported functions | |
What you can do with Model Compressor | |
Verification of the Structured Pruning | |
",,,2023-06-28 07:12:14.309344 | |
What is NetsPresoo?,"NetsPresso is a machine learning pipeline that provides various tools and functionalities for model development and optimization. It includes components such as Model Searcher, Model Compressor, and Model Launcher. NetsPresso aims to simplify the process of developing and deploying machine learning models by offering features like dataset preparation, model compression, and model deployment. It supports tasks like image classification, object detection, semantic segmentation, and super resolution. NetsPresso also provides benchmark results and best practices for different models and datasets.","Source 0 | |
Model Compressor | |
Jump to ContentDocumentationHomeDocumentationv1.3.0DocumentationLog InLog InMoon (Dark Mode)Sun (Light Mode)v1.3.0HomeDocumentationSearchINTRODUCTIONWelcomeWhat is NetsPresso?Machine Learning Pipeline with NetsPressoAdvantages of NetsPressoBENCHMARKSModel Searcher- Object DetectionModel Compressor- Image Classification- Object Detection- Semantic Segmentation- Super ResolutionUSE CASESFree People Detection ModelsFree Vehicle Detection ModelsNETSPRESSO MODEL SEARCHERFeatures | |
The fine-tuning procedure is necessary for each compression. It usually follows the original model's training configuration, except the learning rate. After a few batches of training, the learning rate is optimized by determining if the loss has converged or not. | |
All of the original and compressed models can be downloaded easily on the Model Compressor Model Zoo. | |
See Image Classification Results | |
See Object Detection Results | |
See Semantic Segmentation Results | |
See Super Resolution ResultsUpdated 7 months ago Table of Contents | |
See Image Classification Results | |
See Object Detection Results | |
See Semantic Segmentation Results | |
See Super Resolution Results | |
###################################################### | |
Source 1 | |
Connect Personal Server | |
Jump to ContentDocumentationHomeDocumentationv1.3.0DocumentationLog InLog InMoon (Dark Mode)Sun (Light Mode)v1.3.0HomeDocumentationSearchINTRODUCTIONWelcomeWhat is NetsPresso?Machine Learning Pipeline with NetsPressoAdvantages of NetsPressoBENCHMARKSModel Searcher- Object DetectionModel Compressor- Image Classification- Object Detection- Semantic Segmentation- Super ResolutionUSE CASESFree People Detection ModelsFree Vehicle Detection ModelsNETSPRESSO MODEL SEARCHERFeatures & Scope of supportStep 1: Prepare datasetStep 2: Upload datasetStep 3: Create project (Quick Search)Step 3: Create project (Retraining)Step 4: Check the project result and download a modelNETSPRESSO MODEL COMPRESSORFeatures & Scope of supportMethod: Structured PruningMethod: Filter DecompositionSupported modelsSupported ONNX operatorsStep 1: Prepare modelStep 2: Upload modelStep 3: Compress model (Automatic Compression)Step 3: Compress model (Advanced Compression)Step 4: Check the compression result and download a modelStep 5: Retrain the compressed modelNETSPRESSO MODEL LAUNCHERFeatures & Scope of supportStep 1: Prepare modelStep 2: Upload modelStep 3: Convert model (beta)Step 4: Package model (beta)Personal serverRequirementsConnect Personal ServerRELEASE NOTESNetsPresso ReleasesFAQAbout Credit?Powered byย Connect Personal ServerSuggest EditsTo connect a personal server, start by clicking a 'New Server' button on the screen below. | |
location : My Account > Resources | |
The way to connect a personal server to NetsPresso is to install an agent on the personal server. | |
The process is as follows. | |
Step 1. Create Server | |
Specifies an identifiable name and the path where the agent will be installed. | |
Step 2. Set Server | |
Copy the script that pre-checks the server environment and receives server information. | |
Make the copied script into sh file and run it in the shell. | |
As a result of executing the script, you can see server information in json format as shown below. | |
Copy the server information in json format and paste it into the result input field. | |
Step 3. Connect Server | |
As shown below, check the server information and copy the connect script that can connect the server. | |
Make the copied script into sh file and run it in the shell. | |
As a result of execution, the server is connected as shown below. | |
You can check the server you have connected to on the Resources page. | |
Updated about 1 month ago Table of Contents | |
Step 1. Create Server | |
Step 2. Set Server | |
Step 3. Connect Server | |
###################################################### | |
Source 2 | |
- Object Detection | |
Jump to ContentDocumentationHomeDocumentationv1.3.0DocumentationLog InLog InMoon (Dark Mode)Sun (Light Mode)v1.3.0HomeDocumentationSearchINTRODUCTIONWelcomeWhat is NetsPresso?Machine Learning Pipeline with NetsPressoAdvantages of NetsPressoBENCHMARKSModel Searcher- Object DetectionModel Compressor- Image Classification- Object Detection- Semantic Segmentation- Super ResolutionUSE CASESFree People Detection ModelsFree Vehicle Detection ModelsNETSPRESSO MODEL SEARCHERFeatures & Scope of supportStep 1: Prepare datasetStep 2: Upload datasetStep 3: Create project (Quick Search)Step 3: Create project (Retraining)Step 4: Check the project result and download a modelNETSPRESSO MODEL COMPRESSORFeatures & Scope of supportMethod: Structured PruningMethod: Filter DecompositionSupported modelsSupported ONNX operatorsStep 1: Prepare modelStep 2: Upload modelStep 3: Compress model (Automatic Compression)Step 3: Compress model (Advanced Compression)Step 4: Check the compression result and download a modelStep 5: Retrain the compressed modelNETSPRESSO MODEL LAUNCHERFeatures & Scope of supportStep 1: Prepare modelStep 2: Upload modelStep 3: Convert model (beta)Step 4: Package model (beta)Personal serverRequirementsConnect Personal ServerRELEASE NOTESNetsPresso ReleasesFAQAbout Credit?Powered byย - Object DetectionSuggest EditsAll of the original and compressed models can be downloaded easily on the Model Compressor Model Zoo. | |
You can get Compressed results with Automatic Compression and Compressed (Adv.) results with Advanced Compression. | |
PyTorch | |
ModelBest PracticeTypeDatasetmAP(0.5) (%)mAP(0.5:0.95)(%)FLOPs (M)Params (M)Latency (ms)Model Size (MB)YOLOXOriginalCOCO68.049.7156006.2054.2112239.46207.37YOLOXGoogle ColabCompressed-1COCO67.16 (-0.84)48.64 (-1.06)101804.06 (1.53x)19.96 (2.7x)8502.72 (1.44x)76.61 (2.7x)YOLOXGoogle ColabCompressed-2COCO61.43 (-6.57)43.23 (-5.47)38607.03 (4.04x)4.93 (11.0x)4235.37 (2.89x)19.17 (10.80x) | |
The modelโs latency is measured on Raspberry Pi 4B (1.5GHz ARM Cortex). | |
Options: FP32, ONNX runtime | |
TensorFlow-Keras | |
ModelBest PracticeTypeDatasetmAP(0.5) (%)mAP(0.5:0.95)(%)FLOPs (M)Params (M)Latency (ms)Model Size (MB)YOLOv4OriginalPASCAL VOC82.22-61871.8265.3264318.70262.90YOLOv4Google ColabCompressed-1PASCAL VOC87.23 (+5.01)-11459.69 (5.4x)10.59 (6.17x)28651.70 (2.16x)44.12 (5.96x)YOLOv4Google ColabCompressed-2PASCAL VOC87.91 (+5.69)-14442.96 (4.28x)10.71 (6.1x)28976.40 (2.14x)44.36 (5.93x) | |
YOLOv4 model with EfficientNet B1 based backbone. | |
The modelโs latency is measured on Raspberry Pi 4B (1.5GHz ARM Cortex). | |
Options: FP32, TFLite | |
Updated about 2 months ago Table of Contents | |
PyTorch | |
TensorFlow-Keras | |
###################################################### | |
Source 3 | |
- Object Detection | |
Jump to ContentDocumentationHomeDocumentationv1.3.0DocumentationLog InLog InMoon (Dark Mode)Sun (Light Mode)v1.3.0HomeDocumentationSearchINTRODUCTIONWelcomeWhat is NetsPresso?Machine Learning Pipeline with NetsPressoAdvantages of NetsPressoBENCHMARKSModel Searcher- Object DetectionModel Compressor- Image Classification- Object Detection- Semantic Segmentation- Super ResolutionUSE CASESFree People Detection ModelsFree Vehicle Detection ModelsNETSPRESSO MODEL SEARCHERFeatures & Scope of supportStep 1: Prepare datasetStep 2: Upload datasetStep 3: Create project (Quick Search)Step 3: Create project (Retraining)Step 4: Check the project result and download a modelNETSPRESSO MODEL COMPRESSORFeatures & Scope of supportMethod: Structured PruningMethod: Filter DecompositionSupported modelsSupported ONNX operatorsStep 1: Prepare modelStep 2: Upload modelStep 3: Compress model (Automatic Compression)Step 3: Compress model (Advanced Compression)Step 4: Check the compression result and download a modelStep 5: Retrain the compressed modelNETSPRESSO MODEL LAUNCHERFeatures & Scope of supportStep 1: Prepare modelStep 2: Upload modelStep 3: Convert model (beta)Step 4: Package model (beta)Personal serverRequirementsConnect Personal ServerRELEASE NOTESNetsPresso ReleasesFAQAbout Credit?Powered byย - Object DetectionSuggest EditsQuick Search supports to train a model based on open sources and NPNets will be available with Advanced Search. | |
YOLOv5 and YOLOv5-NPNets | |
DatasetModelmAP(0.5) (%)mAP(0.5:0.95) (%)GFLOPsParameters (M)Model Size (MB)PASCAL VOCYOLOv5n72.2444.31.793.62PASCAL VOCYOLOv5n-NPNet73.446.33.51.182.49PASCAL VOCYOLOv5s77.952.2167.0713.7PASCAL VOCYOLOv5s-NPNet80.25612.84.619.05PASCAL VOCYOLOv5m82.159.348.320.9540.2PASCAL VOCYOLOv5m-NPNet83.460.63712.2623.7PASCAL VOCYOLOv5l82.961108.346.2488.6PASCAL VOCYOLOv5l-NPNet85.163.88125.1948.5Updated 5 months ago Table of Contents | |
YOLOv5 and YOLOv5-NPNets | |
",,,2023-08-31 13:29:07.271798 | |