from transformers import AutoModelForCausalLM, AutoTokenizer,AutoModel import gradio as gr import torch title = "🤖AI ChatBot" description = "A State-of-the-Art Large-scale Pretrained Response generation model (DialoGPT)" examples = [["How are you?"]] # Load model directly from transformers import AutoModel #model = AutoModel.from_pretrained("ironlanderl/gemma-2-2b-it-Q5_K_M-GGUF") #modelName = "google/gemma-2-2b-it" #modelName = "ironlanderl/gemma-2-2b-it-Q5_K_M-GGUF" modelName = "bartowski/Mistral-Nemo-Instruct-2407-GGUF" modelId = "Mistral-Nemo-Instruct-2407-Q2_K.gguf" tokenizer = AutoTokenizer.from_pretrained(modelName,gguf_file=modelId) model = AutoModel.from_pretrained(modelName,gguf_file=modelId,torch_dtype=torch.float16) #model = AutoModelForCausalLM.from_pretrained("google/gemma-2-2b-it", torch_dtype=torch.float16 ) #stvlynn/Gemma-2-2b-Chinese-it #tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-large") #model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-large") #The model was loaded with use_flash_attention_2=True, which is deprecated and may be removed in a future release. Please use `attn_implementation="flash_attention_2"` instead. def generate_text(prompt): inputs = tokenizer(prompt, return_tensors="pt") outputs = model.generate(**inputs) return tokenizer.decode(outputs[0], skip_special_tokens=True) iface = gr.Interface(fn=generate_text, inputs="text", outputs="text") """ def predict(input, history=[]): # tokenize the new input sentence new_user_input_ids = tokenizer.encode( input + tokenizer.eos_token, return_tensors="pt" ) #attentionMask = torch.ones(new_user_input_ids.shape, dtype=torch.long) # append the new user input tokens to the chat history bot_input_ids = torch.cat([torch.LongTensor(history), new_user_input_ids], dim=-1) # generate a response history = model.generate( bot_input_ids, max_length=4000, pad_token_id=tokenizer.eos_token_id ).tolist() # convert the tokens to text, and then split the responses into lines response = tokenizer.decode(history[0]).split("<|endoftext|>") # print('decoded_response-->>'+str(response)) response = [ (response[i], response[i + 1]) for i in range(0, len(response) - 1, 2) ] # convert to tuples of list # print('response-->>'+str(response)) return response, history gr.Interface( fn=predict, title=title, description=description, examples=examples, inputs=["text", "state"], outputs=["chatbot", "state"], theme="finlaymacklon/boxy_violet", ).launch() """