Spaces:
Running
on
Zero
Running
on
Zero
File size: 7,763 Bytes
4e757f3 574151f 4e757f3 574151f 4e757f3 574151f 4e757f3 574151f 4e757f3 574151f 4e757f3 574151f 4e757f3 574151f 4e757f3 574151f 4e757f3 574151f 4e757f3 574151f 4e757f3 574151f 4e757f3 574151f 4e757f3 574151f 4e757f3 574151f 4e757f3 574151f 4e757f3 574151f 4e757f3 574151f 4e757f3 574151f 4e757f3 574151f 4e757f3 574151f 4e757f3 574151f 4e757f3 574151f 4e757f3 574151f 4e757f3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 |
import os
import torch
import gradio as gr
import numpy as np
import spaces
from PIL import Image
from transformers import AutoModelForCausalLM
from janus.models import MultiModalityCausalLM, VLChatProcessor
from janus.utils.io import load_pil_images
# Specify the path to the model
model_path = "deepseek-ai/Janus-1.3B"
# Load the VLChatProcessor and tokenizer
print("Loading VLChatProcessor and tokenizer...")
vl_chat_processor: VLChatProcessor = VLChatProcessor.from_pretrained(model_path)
tokenizer = vl_chat_processor.tokenizer
# Load the MultiModalityCausalLM model
print("Loading MultiModalityCausalLM model...")
vl_gpt: MultiModalityCausalLM = AutoModelForCausalLM.from_pretrained(
model_path, trust_remote_code=True
)
# Move the model to GPU with bfloat16 precision for efficiency
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
vl_gpt = vl_gpt.to(torch.bfloat16 if device.type == "cuda" else torch.float32).to(device).eval()
@spaces.GPU(duration=120)
def text_image_to_text(user_text: str, user_image: Image.Image) -> str:
"""
Generate a textual response based on user-provided text and image.
This can be used for tasks like converting an image of a formula to LaTeX code
or generating descriptive captions.
"""
# Define the conversation with user-provided text and image
conversation = [
{
"role": "User",
"content": user_text,
"images": [user_image],
},
{"role": "Assistant", "content": ""},
]
# Load the PIL images from the conversation
pil_images = load_pil_images(conversation)
# Prepare the inputs for the model
prepare_inputs = vl_chat_processor(
conversations=conversation, images=pil_images, force_batchify=True
).to(device)
# Prepare input embeddings
inputs_embeds = vl_gpt.prepare_inputs_embeds(**prepare_inputs)
# Generate the response from the model
with torch.no_grad():
outputs = vl_gpt.language_model.generate(
inputs_embeds=inputs_embeds,
attention_mask=prepare_inputs.attention_mask,
pad_token_id=tokenizer.eos_token_id,
bos_token_id=tokenizer.bos_token_id,
eos_token_id=tokenizer.eos_token_id,
max_new_tokens=512,
do_sample=False,
use_cache=True,
)
# Decode the generated tokens to get the answer
answer = tokenizer.decode(outputs[0].cpu().tolist(), skip_special_tokens=True)
return answer
@spaces.GPU(duration=120)
def text_to_image(prompt: str) -> Image.Image:
"""
Generate an image based on the input text prompt.
"""
# Define the conversation with the user prompt
conversation = [
{
"role": "User",
"content": prompt,
},
{"role": "Assistant", "content": ""},
]
# Apply the SFT template to format the prompt
sft_format = vl_chat_processor.apply_sft_template_for_multi_turn_prompts(
conversations=conversation,
sft_format=vl_chat_processor.sft_format,
system_prompt="",
)
prompt_text = sft_format + vl_chat_processor.image_start_tag
# Encode the prompt
input_ids = vl_chat_processor.tokenizer.encode(prompt_text)
input_ids = torch.LongTensor(input_ids).unsqueeze(0).to(device)
# Prepare tokens for generation
parallel_size = 1 # Adjust based on GPU memory
tokens = torch.zeros((parallel_size*2, len(input_ids[0])), dtype=torch.int).to(device)
for i in range(parallel_size*2):
tokens[i, :] = input_ids
if i % 2 != 0:
tokens[i, 1:-1] = vl_chat_processor.pad_id
# Get input embeddings
inputs_embeds = vl_gpt.language_model.get_input_embeddings()(tokens)
# Generation parameters
image_token_num_per_image = 576
img_size = 384
patch_size = 16
cfg_weight = 5
temperature = 1
# Initialize tensor to store generated tokens
generated_tokens = torch.zeros((parallel_size, image_token_num_per_image), dtype=torch.int).to(device)
for i in range(image_token_num_per_image):
if i == 0:
outputs = vl_gpt.language_model.model(inputs_embeds=inputs_embeds, use_cache=True)
else:
outputs = vl_gpt.language_model.model(inputs_embeds=inputs_embeds, use_cache=True, past_key_values=outputs.past_key_values)
hidden_states = outputs.last_hidden_state
# Get logits and apply classifier-free guidance
logits = vl_gpt.gen_head(hidden_states[:, -1, :])
logit_cond = logits[0::2, :]
logit_uncond = logits[1::2, :]
logits = logit_uncond + cfg_weight * (logit_cond - logit_uncond)
# Sample the next token
probs = torch.softmax(logits / temperature, dim=-1)
next_token = torch.multinomial(probs, num_samples=1)
generated_tokens[:, i] = next_token.squeeze(dim=-1)
# Prepare for the next step
next_token_combined = torch.cat([next_token, next_token], dim=0).view(-1)
img_embeds = vl_gpt.prepare_gen_img_embeds(next_token_combined)
inputs_embeds = img_embeds.unsqueeze(dim=1)
# Decode the generated tokens to get the image
dec = vl_gpt.gen_vision_model.decode_code(
generated_tokens.to(dtype=torch.int),
shape=[parallel_size, 8, img_size//patch_size, img_size//patch_size]
)
dec = dec.to(torch.float32).cpu().numpy().transpose(0, 2, 3, 1)
dec = np.clip((dec + 1) / 2 * 255, 0, 255).astype(np.uint8)
# Convert to PIL Image
visual_img = dec[0]
image = Image.fromarray(visual_img)
return image
# Create the Gradio interface
with gr.Blocks() as demo:
gr.Markdown(
"""
# Janus-1.3B Gradio Demo
This demo showcases two functionalities using the Janus-1.3B model:
1. **Text + Image to Text**: Input both text and an image to generate a textual response.
2. **Text to Image**: Enter a descriptive text prompt to generate a corresponding image.
"""
)
with gr.Tab("Text + Image to Text"):
gr.Markdown("### Generate Text Based on Input Text and Image")
with gr.Row():
with gr.Column():
user_text_input = gr.Textbox(
lines=2,
placeholder="Enter your instructions or description here...",
label="Input Text",
)
user_image_input = gr.Image(
type="pil",
label="Upload Image",
tool="editor",
)
submit_btn = gr.Button("Generate Text")
with gr.Column():
text_output = gr.Textbox(
label="Generated Text",
lines=15,
interactive=False,
)
submit_btn.click(fn=text_image_to_text, inputs=[user_text_input, user_image_input], outputs=text_output)
with gr.Tab("Text to Image"):
gr.Markdown("### Generate Image Based on Text Prompt")
with gr.Row():
with gr.Column():
prompt_input = gr.Textbox(
lines=2,
placeholder="Enter your image description here...",
label="Text Prompt",
)
generate_btn = gr.Button("Generate Image")
with gr.Column():
image_output = gr.Image(
label="Generated Image",
)
generate_btn.click(fn=text_to_image, inputs=prompt_input, outputs=image_output)
# Launch the Gradio app
if __name__ == "__main__":
demo.launch()
|