import streamlit as st import torch import numpy as np st.markdown("### A dummy site for classifying article topics by title and abstract.") st.markdown("It can predict the following topics: Computer Science, Economics, Electrical Engineering and Systems Science, Mathematics, Quantitative Biology, Quantitative Finance, Statistics, Physics") from transformers import pipeline from transformers import AutoTokenizer, AutoModelForSequenceClassification @st.cache(suppress_st_warning=True) def model_tokenizer(): model_name = 'distilbert-base-cased' #tokenizer = AutoTokenizer.from_pretrained("distilbert-base-cased", problem_type="multi_label_classification") model = AutoModelForSequenceClassification.from_pretrained("distilbert-base-cased", num_labels=8, problem_type="multi_label_classification") weights = torch.load('model.pt', map_location=torch.device('cpu')) model.load_state_dict(weights) return model#, tokenizer def make_prediction(model, tokenizer, text): #print(text) tokens = tokenizer.encode(text) with torch.no_grad(): logits = model.cpu()(torch.as_tensor([tokens]))[0] #print(logits) probs = np.array(torch.softmax(logits[-1, :], dim=-1)) #print(probs) sorted_classes, sorted_probs = np.flip(np.argsort(probs)), sorted(probs, reverse=True) prediction_classes, prediction_probs = [], [] probs_sum = 0 i=0 res = [] while probs_sum <= 0.95: # print(i) # print(sorted_classes) # print(sorted_classes[i]) # print(to_category) # print(sorted_classes[i], to_category[sorted_classes[i]]) prediction_classes.append(to_category[sorted_classes[i]]) prediction_probs.append(100*sorted_probs[i]) probs_sum += sorted_probs[i] i += 1 for pr, cl in zip(prediction_probs, prediction_classes): print(str("{:.2f}".format(pr) + "%"), cl) res.append((str("{:.2f}".format(pr) + "%"), cl)) return res model = model_tokenizer() tokenizer = AutoTokenizer.from_pretrained("distilbert-base-cased", problem_type="multi_label_classification") categories_full = ['Computer Science', 'Economics', 'Electrical Engineering and Systems Science', 'Mathematics', 'Quantitative Biology', 'Quantitative Finance', 'Statistics', 'Physics'] to_category = {} for i in range(len(categories_full)): to_category[i] = categories_full[i] title = st.text_area("Type the title of the article here") abstract = st.text_area("Type the abstract of the article here") if st.button('Analyse'): if title or abstract: text = '[TITLE] ' + title + ' [ABSTRACT] ' + abstract res = make_prediction(model, tokenizer, text) for cat in res: st.markdown(f"{cat[0], cat[1]}") else: st.error(f"Write title or abstract") #st.markdown(f"{make_prediction(model, tokenizer, text)}")